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DISCRETE RANDOM VARIABLES

A random variable is discrete if the set of all possible outcomes is
countable.

The probability mass function (pmf) of a discrete random variable , 

describes the probability associated with each possible value of .

 has the following properties:

1.  for all values .

2. .

Most distributions are often charaterized by some parameter (or
set/vector of parameters) .

So, to make this clear, we will often write the pmf instead as .

Y p(y)

Y

p(y)

0 ≤ p(y) ≤ 1 y ∈ Y

∑y∈Y
p(y) = 1

θ

p(y|θ)
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BERNOULLI DISTRIBUTION

The Bernoulli distribution can be used to describe an experiment with two
outcomes, such as

Flipping a coin (heads or tails);

Vote turnout (vote or not); and

The outcome of a basketball game (win or loss).

In all cases, we can represent this as a binary random variable where
the probability of "success" is  and the probability of "failure" is .

We usually write this as: , where .

It follows that

What is the mean of this distribution? What is the variance?

θ 1 − θ

Y ∼ Bernoulli(θ) θ ∈ [0, 1]

p(y|θ) = Pr(Y = y|θ) = θy(1 − θ)1−y;    y = 0, 1.
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BINOMIAL DISTRIBUTION

The binomial distribution describes the number of successes from 
independent Bernoulli trials.

That is,  number of "successes" in  independent trials and  is the
probability of success per trial.

We usually write this as: , where .

The pmf is

Example:  number of individuals with type I diabetes out of a
sample of  surveyed.

Binomial likelihoods are commonly used in collecting data on
proportions.

What is the mean of this distribution? What is the variance?

n

Y = n θ

Y ∼ Bin(n, θ) θ ∈ [0, 1]

p(y|θ) = Pr(Y = y|θ, n) = ( )θy(1 − θ)n−y;    y = 0, 1, … , n.
n

y

Y =
n
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POISSON DISTRIBUTION

 denotes that  is a Poisson random variable.

The Poisson distribution is commonly used to model count data consisting
of the number of events in a given time interval.

The Poisson distribution is parameterized by  and the pmf is given by

Similar to binomial but with no limit on the total number of counts.

What is the mean of this distribution? What is the variance?

Y ∼ Po(θ) Y

θ

p(y|θ) − Pr[Y = y|θ] = ;     y = 0, 1, 2, … ;     θ > 0.
θye−θ

y!
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GENERAL DISCRETE DISTRIBUTIONS

Useful to consider general discrete distributions having an arbitrary form.

Suppose . Then define  for each 

. That is,

where .

 are "atoms" representing possible values for .

For example, these may be words in a dictionary or values for education
as a categorical variable. Useful for text data, categorical observations,
etc.

Can also write as , where  denotes a unit mass at .

Often called the categorical distribution or generalized Bernoulli
distribution. Also, see the multinomial distribution.

Y ∈ {y⋆
1 , … , y⋆

k} Pr(Y = y⋆
h) = πh

h = 1, … , k

p(y|π) = Pr[Y = y|π] = ∏
h

π
1[Y =y⋆

h
]

h
;   y ∈ y⋆

1 , … , y⋆
k

π = (π1, … , πk)

(y⋆
1 , … , y⋆

k) Y

Y ∼ ∑
k

h=1 πhδy⋆
h

δy⋆
h

y⋆
h
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CONTINUOUS RANDOM VARIABLES

The probability density function (pdf),  or , of a continuous

random variable  has slightly different properties:

1.  for all .

2. .

The pdf for a continuous random variable is not necessarily less than 1.

Also,  is NOT the probability of value .

However, if , we say informally that  has a "higher

probability" than .

As we did in the discrete case, we will also often write the pdf instead as 
 or  to make the conditioning obvious.

p(y) f(y)

Y

0 ≤ f(y) y ∈ Y

∫
y∈R

f(y)dy = 1

f(y) y

f(y1) > f(y2) y1

y2

f(y|θ) p(y|θ)
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UNIFORM DENSITY

The simplest example of a continuous density is the uniform density.

 denotes density is uniform in interval .

The pdf is simply

The cdf is

The mean (expectation) is

What is the variance? Also, can you prove the formula for the mean?

Y ∼ Unif(a, b) (a, b)

f(y|a, b) = ;    y ∈ (a, b).
1

b − a

F(y) = Pr(Y ≤ y) = ∫
y

a

dz =
1

b − a

y − a

b − a

a + b

2
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BETA DENSITY

The uniform density can be used as a prior for a probability if 
.

However, it is very inflexible clearly.

Why?

An alternative for  is the beta density, written as ,

with

where .  for any positive integer .

As we have already seen, the beta density is quite flexible in
characterizing a broad variety of densities on .

Beta(1,1) is the same as Unif(0,1). Workout the pdfs to convince yourself!

(a, b) ⊂ (0, 1)

y ∈ Y Y ∼ Beta(a, b)

f(y|a, b) = ya−1(1 − y)b−1;    y ∈ (0, 1),  a > 0,  b > 0.
1

B(a, b)

B(a, b) =
Γ(a)Γ(b)

Γ(a + b)
Γ(n) = (n − 1)! n

(0, 1)
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GAMMA DENSITY

The gamma density will be useful as a prior for parameters that are
strictly positive.

For random variables , we have the pdf

Properties:

Note: there are multiple parameterizations of the gamma distribution.
We will rely on this version in this course.

Under this parameterization,  is known as the shape parameter, while 
is known as the rate parameter.

Under this parameterization, if , then , that is,

the exponential distribution.

Y ∼ Ga(a, b)

f(y|a, b) = ya−1e−by;    y ∈ (0, ∞),  a > 0,  b > 0.
ba

Γ(a)

E[Y ] = ;   V[Y ] = .
a

b

a

b2

a b

Y ∼ Ga(1, θ) Y ∼ Exp(θ)
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CONTINUOUS JOINT DISTRIBUTIONS

Suppose we have two random variables .

Their joint distribution function is

where  is the joint pdf.

The marginal density of  can be obtained by

which is referred to as marginalizing out .

We will be doing a lot of "marginalizations", so take note!

θ = (θ1, θ2)

Pr(θ1 ≤ a, θ2 ≤ b) = ∫
a

−∞

∫
b

−∞

f(θ1, θ2)dθ1dθ2,

f(θ1, θ2)

θ1

f(θ1) = ∫
∞

−∞

f(θ1, θ2)dθ2,

θ2
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FACTORIZING JOINT DENSITIES AND

INDEPENDENCE

The joint density  can be factorized as

For independent random variables, the joint density equals the product
of the marginals:

This implies that  and  under

independence.

These relationships extend automatically to . That is,

under mutual independence of the elements of the  vector.

f(θ1, θ2)

f(θ1, θ2) = f(θ1|θ2)f(θ2),    or   f(θ1, θ2) = f(θ2|θ1)f(θ1).

f(θ1, θ2) = f(θ1)f(θ2).

f(θ2|θ1) = f(θ2) f(θ1|θ2) = f(θ1)

θ = (θ1, … , θp)

f(θ1, … , θp) =
p

∏
j=1

f(θj),

θ
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CONDITIONAL INDEPENDENCE

Suppose  for .

Data  are independent & identically distributed draws from

distribution .

The data are said to be conditionally independent given  if

 is also the likelihood function  of the data.

The marginal likelihood of the data is

Here,  can not be written as a product of densities as in ; we

lose independence when we marginalize out .

yi
iid
∼ f(yi|θ) i = 1, … ,n

{yi}

f(yi|θ)

θ

f(y1, … , yn|θ) =
n

∏
i=1

f(yi|θ).

f(y1, … , yn|θ) L(θ|y)

L(y) = f(y1, … , yn) = ∫
Θ

f(y1, … , yn|θ)p(θ)dθ = ∫
Θ

L(θ|y)p(θ)dθ.

L(y)
n

∏
i=1

f(yi)

θ
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EXCHANGEABILITY

In marginalizing out , the observations  are not marginally

independent.

 are exchangeable if , for all

permutations  of .

de Finetti's Theorem: Suppose  are exchangeable under above

definition for any . Then

for some , prior distribution  and sampling model .

Simply put, de Finetti's Theorem states that exchangeable observations
are conditionally independent relative to some parameter.

de Finetti's Theorem is critical in providing a motivation for using
parameters and for putting priors on parameters.

θ {yi}

{yi} f(y1, … , yn) = f(yπ1
, … , yπn

)

π {1, … , n}

{yi}

n

f(y1, … , yn) = ∫
Θ

[
n

∏
i=1

f(yi|θ)] p(θ)dθ.

θ p(θ) f(yi|θ)
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WHAT'S NEXT?

MOVE ON TO THE READINGS FOR THE NEXT MODULE!
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