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BAYESIAN INFERENCE

= Once again, given data y and an unknown population parameter
0, estimate 6.

= As a Bayesian, you update some prior information for 6 with information
in the data y, to obtain the posterior density p(6|y).

= Personally, | prefer being able to obtain posterior densities that describe
my parameter, instead of estimated summaries (usually measures of
central tendency) along with confidence intervals.

= Bayes' theorem - reminder:

p(O)p(yl6)  p(O)p(yl0)

POly) = [p@)pa)as  p@)
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COMMENTS ON THE POSTERIOR DENSITY
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The posterior density is more concentrated than the prior & quantifies
learning about 6.

In fact, this is the optimal way to learn from data - see discussion in Hoff
chapter 1.

As more & more data become available, posterior density will converge
to a normal (Gaussian) density centered on the MLE (Bayes central limit
theorem).

In finite samples for limited data, the posterior can be highly skewed &
noticeably non-Gaussian.

4/12



CONJUGACY

STA 360/602L

Starting with an arbitrary prior density p(6) & sampling density p(y|6) we
may encounter problems in calculating the posterior density p(6|y).

In particular, you may notice the denominator in the Bayes' rule:

p(y) = /@ p(6)p(310)d8.

This integral may not be analytically tractable!

When the prior is conjugate however, the marginal likelihood can be
calculated analytically.

Conjugacy = the posterior density (or mass) function has the same form
as the prior density (or mass) function.

Conjugate priors make calculations easy but may not represent our prior
information well.
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KERNELS
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In Bayesian statistics, the kernel of a pdf or pmf omits any multipliers that
do not depend on the random variable or parameter we care about.

For many distributions, the kernel is in a simple form but the normalizing
constant complicates calculations.

If one recognizes the kernel as that matching a known distribution, then
the normalizing factor can be reinstated. This is a very MAJOR TRICK we
will use to calculate posterior distributions.

For example, the normal density is given by

(y — p)?
Pyl 0?) = ——e 207
V2mo?
but the kernel is just
(y — p)?
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BERNOULLI DATA

= Back to our example: suppose 0 € (0, 1) is the population proportion of
individuals with diabetes in the US.

= Suppose we take a sample of n individuals and record whether or not
they have diabetes (as binary: 0,1).

= Then we can use the Bernoulli distribution as the sampling distribution.

= Also, we already established that we can use a beta prior for 6.
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BERNOULLI DATA

= Generally, it turns out that if

= p(yil0) : yi s Bernoulli(d) fori =1,...,n, and
= 71(0) : 0 ~ Beta(a,b),

then the posterior distribution is also a beta distribution.

= Can we derive the posterior distribution and its parameters? Let's do
some work on the board!

» Updating a beta prior with a Bernoulli likelihood leads to a beta
posterior - we have conjugacy!

» Llety = (y1,...,yn). Specifically, we have.

p(0ly) = Beta (a + Zyi,b +n— Zyz> :
=1 =1

» This is the beta-Bernoulli model. More generally, this is actually the beta-
— binomial model.
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BETA-BINOMIAL IN MORE DETAIL
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= Suppose the sampling density of the data is

pule) = () oy

Suppose also that we have a Beta(a, b) prior on the probability 6.

Then the posterior density then has the beta form

7(0ly) = Beta(a + y,b+n — y).

The posterior has expectation

a+y a+b . n
E(0|ly) = = X prior mean + T

Db @l X sample mean.

For this specification, sometimes a and b are interpreted as "prior
data" with a interpreted as the prior number of 1's, b as the
prior number of 0's, and a + b as the prior sample size.

As we get more and more data, the majority of our information about 6
comes from the data as opposed to the prior.

9/ 12



BINOMIAL DATA

= For example, suppose you want to find the Bayesian estimate of the
probability 8 that a coin comes up heads.

= Before you see the data, you express your uncertainty about 6 through
the prior p(0) = Beta(2, 2)

= Now suppose you observe 10 tosses, of which only 1 was heads.

= Then, the posterior density p(0|y) is Beta(3,11).
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BINOMIAL DATA

= Recall that the mean of Beta(a, b) is .

2 _
= So, before you saw the data, you thought the mean for 6 was =5 = 0.50

. . L] . 3 _
= However, after seeing the data, you believe it is .= = 0.21.
- . ° G,b
The variance of Beta(a, b) is T

= So before you saw data, your uncertainty about 6, in terms of the

standard deviation, was 42i5 = 0.22.

= However, after seeing 1 Heads in 10 tosses, your standard deviation gets
updated to 145’315 = 0.11.

= Clearly, as the number of tosses goes to infinity, your uncertainty goes to
zero.
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WHAT'S NEXT®

MOVE ON TO THE READINGS FOR THE NEXT MODULE!
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