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OUTLINE

Conjugacy

Kernels

Bernoulli data

Binomial data
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BAYESIAN INFERENCE

Once again, given data  and an unknown population parameter
, estimate .

As a Bayesian, you update some prior information for  with information
in the data , to obtain the posterior density .

Personally, I prefer being able to obtain posterior densities that describe
my parameter, instead of estimated summaries (usually measures of
central tendency) along with confidence intervals.

Bayes' theorem - reminder:
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COMMENTS ON THE POSTERIOR DENSITY

The posterior density is more concentrated than the prior & quantifies
learning about .

In fact, this is the optimal way to learn from data - see discussion in Hoff
chapter 1.

As more & more data become available, posterior density will converge
to a normal (Gaussian) density centered on the MLE (Bayes central limit
theorem).

In finite samples for limited data, the posterior can be highly skewed &
noticeably non-Gaussian.

θ
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CONJUGACY

Starting with an arbitrary prior density  & sampling density  we

may encounter problems in calculating the posterior density .

In particular, you may notice the denominator in the Bayes' rule:

This integral may not be analytically tractable!

When the prior is conjugate however, the marginal likelihood can be
calculated analytically.

Conjugacy  the posterior density (or mass) function has the same form
as the prior density (or mass) function.

Conjugate priors make calculations easy but may not represent our prior
information well.
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KERNELS

In Bayesian statistics, the kernel of a pdf or pmf omits any multipliers that
do not depend on the random variable or parameter we care about.

For many distributions, the kernel is in a simple form but the normalizing
constant complicates calculations.

If one recognizes the kernel as that matching a known distribution, then
the normalizing factor can be reinstated. This is a very MAJOR TRICK we
will use to calculate posterior distributions.

For example, the normal density is given by

but the kernel is just
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BERNOULLI DATA

Back to our example: suppose  is the population proportion of

individuals with diabetes in the US.

Suppose we take a sample of  individuals and record whether or not
they have diabetes (as binary: 0,1).

Then we can use the Bernoulli distribution as the sampling distribution.

Also, we already established that we can use a beta prior for .

θ ∈ (0, 1)

n

θ
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BERNOULLI DATA

Generally, it turns out that if

 for , and

,

then the posterior distribution is also a beta distribution.

Can we derive the posterior distribution and its parameters? Let's do
some work on the board!

Updating a beta prior with a Bernoulli likelihood leads to a beta
posterior - we have conjugacy!

Let . Specifically, we have.

This is the beta-Bernoulli model. More generally, this is actually the beta-
binomial model.

p(yi|θ) : yi
iid
∼ Bernoulli(θ) i = 1, … ,n

π(θ) : θ ∼ Beta(a, b)

y = (y1, … , yn)

p(θ|y) = Beta(a +
n

∑
i=1

yi, b + n −
n

∑
i=1

yi) .
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BETA-BINOMIAL IN MORE DETAIL

Suppose the sampling density of the data is

Suppose also that we have a  prior on the probability .

Then the posterior density then has the beta form

The posterior has expectation

For this specification, sometimes  and  are interpreted as "prior
data" with a interpreted as the prior number of 1's,  as the
prior number of 0's, and  as the prior sample size.

As we get more and more data, the majority of our information about 
comes from the data as opposed to the prior.

p(y|θ) = ( )θy(1 − θ)n−y.
n

y

Beta(a, b) θ

π(θ|y) = Beta(a + y, b + n − y).

E(θ|y) = = × prior mean + × sample mean.
a + y

a + b + n
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BINOMIAL DATA

For example, suppose you want to find the Bayesian estimate of the
probability  that a coin comes up heads.

Before you see the data, you express your uncertainty about  through
the prior 

Now suppose you observe 10 tosses, of which only 1 was heads.

Then, the posterior density  is .

θ

θ

p(θ) = Beta(2, 2)

p(θ | y) Beta(3, 11)
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BINOMIAL DATA

Recall that the mean of  is .

So, before you saw the data, you thought the mean for  was 

.

However, after seeing the data, you believe it is .

The variance of  is .

So before you saw data, your uncertainty about , in terms of the

standard deviation, was .

However, after seeing 1 Heads in 10 tosses, your standard deviation gets

updated to .

Clearly, as the number of tosses goes to infinity, your uncertainty goes to
zero.

Beta(a, b) a

a+b

θ = 0.502
2+2

= 0.213
3+11

Beta(a, b) ab

(a+b)2(a+b+1)

θ

√ = 0.224

42×5

√ = 0.1133

142×15
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WHAT'S NEXT?

MOVE ON TO THE READINGS FOR THE NEXT MODULE!
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