STA 360/602L: MODULE 2.2

OPERATIONALIZING DATA ANALYSIS; SELECTING PRIORS

DR. OLANREWAJU MICHAEL AKANDE

OUTLINE

- **Operationalizing data analysis**
- **Example: rare events**
- Selecting priors and potential problems

OPERATIONALIZING DATA ANALYSIS

How should we approach data analysis in general?

- **Step 1. State the question.**
- Step 2. Collect the data.
- Step 3. Explore the data.
- **Step 4. Formulate and state a modeling framework.**
- Step 5. Check your models.
- **Step 6. Answer the question.**

- Step 1. State the question:
	- What is the prevalence of an infectious disease in a small city?
	- Why? High prevalence means more public health precautions are recommended.
- Step 2. Collect the data:
	- Suppose you collect a small random sample of 20 individuals.
- Step 3. Explore the data:
	- Let Y denote the unknown number of infected individuals in the sample.

- Step 4. Formulate and state a modeling framework:
	- Parameter of interest: θ is the fraction of infected individuals in the city.
	- Sampling model: a reasonable model for Y can be $\operatorname{Bin}(20,\theta)$

- **Step 4. Formulate and state a modeling framework:**
	- Prior specification: information from previous studies infection rate in "comparable cities" ranges from 0.05 to 0.20 with an average of 0.10. So maybe a standard deviation of roughly 0.05?
	- What is a good prior? The $expected$ value of θ close to 0.10 and the **standard deviation** close to 0.05.
	- Possible option: $Beta(3.5, 31.5)$ or maybe even $Beta(3, 32)$?

QUICK BETA-BINOMIAL RECAP

Binomial likelihood:

$$
p(y|\theta)=\binom{n}{y}\theta^y(1-\theta)^{n-y}
$$

+ Beta Prior:

$$
\pi(\theta)=\frac{1}{B(a,b)}\theta^{a-1}(1-\theta)^{b-1}=\text{Beta}(a,b)
$$

 \Rightarrow Beta posterior:

$$
\pi(\theta|y)=\frac{1}{B(a+y,b+n-y)}\theta^{a+y-1}(1-\theta)^{b+n-y-1}=\text{Beta}(a+y,b+n-y).
$$

Recall: If $\theta \sim \text{Beta}(a, b)$, then

\n- $$
\mathbb{E}[\theta] = \frac{a}{a+b}
$$
\n- $\mathbb{V}[\theta] = \frac{ab}{(a+b)^2(a+b+1)}$
\n

- Step 4. Formulate and state a modeling framework:
	- Under Beta(3, 32), $Pr(\theta < 0.1) \approx 0.67$.
	- **Posterior distribution for the model:** $\pi(\theta|Y=y) = \text{Beta}(a+y, b+n-y)$
	- Suppose $Y = 0$. Then, $\pi(\theta | Y = y) = \text{Beta}(3, 32 + 20)$

 θ

- Step 5. Check your models:
	- Compare performance of posterior mean and posterior probability that $\theta < 0.1$.
	- Under $Beta(3, 52)$,
		- $\Pr(\theta < 0.1 | Y = y) \approx 0.92$. More confidence in low values of $\theta.$
		- For $\mathbb{E}(\theta|Y=y)$, we have

$$
\mathbb{E}(\theta|y) = \frac{a+y}{a+b+n} = \frac{3}{52} = 0.058.
$$

Recall that the prior mean is $a/(a + b) = 0.09$. Thus, we can see how that contributes to the prior mean.

$$
\mathbb{E}(\theta|y) = \frac{a+b}{a+b+n} \times \text{prior mean} + \frac{n}{a+b+n} \times \text{sample mean}
$$

=
$$
\frac{a+b}{a+b+n} \times \frac{a}{a+b} + \frac{n}{a+b+n} \times \frac{y}{n}
$$

=
$$
\frac{35}{52} \times \frac{3}{35} + \frac{20}{52} \times \frac{0}{n} = \frac{3}{52} = 0.058.
$$

- **Step 6. Answer the question:**
	- People with low prior expectations are generally at least 90% certain that the infection rate is below 0.10.
	- $\pi(\theta|Y)$ is to the left of $\pi(\theta)$ because the observation $Y=0$ provides evidence of a low value of θ .
	- $\pi(\theta|Y)$ is more peaked than $\pi(\theta)$ because it combines information and so contains more information than $\pi(\theta)$ alone.
	- The posterior expectation is 0.058.
	- **The posterior mode is 0.04.**
		- Note, for $Beta(a, b)$, the mode is $(a 1)/(a + b 2)$.
	- The posterior probability that $\theta < 0.1$ is 0.92.

CAUTIONARY TALE: PARAMETERS AT THE BOUNDARY

- Tuyl et al. (2008) discuss potential dangers of using priors that have $a < 1$ with data that are all 0's (or $b < 1$ with all 1's). They consider data on adverse reactions to a new radiological contrast agent.
- Let θ_N : probability of a bad reaction using the new agent.
- Current standard agent causes bad reactions about 15 times in 10000, so one might think 0.0015 is a good guess for θ_N .
- **How do we choose a prior distribution?**

- One might consider a variety of choices centered on $15/10000 = 0.0015$: \blacksquare
	- Prior 1: Beta(1,666) (mean 0.0015; 1 prior bad reaction in 667 administrations)
	- Prior $2: Beta(0.05, 33.33)$ (mean 0.0015; 0.05 prior bad reactions in 33.38 administrations)
	- Prior 3: Beta(1.6, 407.4) (mode 0.0015; 409 prior administrations)
	- Prior 4: Beta(1.05, 497) (median 0.0015; 498.05 prior administrations)
- Does it matter which one we choose?

 θ_N

Let's zoom in:

 θ_N

- Let's take a closer look at properties of these four prior distributions, concentrating on the probability that $\theta_N < 0.0015$.
- That is, new agent not more dangerous than old agent.

- Suppose we have a single arm study of 100 subjects.
- Consider the two most likely potential outcomes:
	- **0** adverse outcomes observed
	- **1** adverse outcome observed

PROBLEMS WITH THE PRIORS

- After just 100 trials with no bad reactions, the low weight (33.38 prior observations) prior indicates one should be 94% sure the new agent is equally safe as (or safer than) the old one.
- The low weight prior largely assumes the conclusion we actually hope for (that the new agent is safer), thus it takes very little confirmatory data to reach that conclusion.
- \blacksquare Is this the behavior we want?
- Take home message: be very careful with priors that have $a < 1$ with data that are all 0's (or $b < 1$ with all 1's).
- Given that we know the adverse event rate should be small, we might try a restricted prior e.g. Unif(0,0.1).

WHAT'S NEXT?

MOVE ON TO THE READINGS FOR THE NEXT MODULE!

