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MARGINAL LIKELIHOOD

= Recall that the marginal likelihood is
L(y) = f(y1,- -, yn) :/f(yl,..-,anH)W(Q)M:/L(9\y)7f(9)d9-
C) S}

» For clarity, when dealing with a single y instead of y1,...,y,, we can
write

L(y) = f(y) = /e £(40)n(6)d6 = /@ L(Bly)(6)de.

= When this is the case, for example in the case of the binomial
distribution, | will often write

» the marginal likelihood as L(y) or f(y), and

» the sampling (conditional) likelihood as f(y|#) or L(0|y).
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MARGINAL LIKELIHOOD

= What is the marginal likelihood for the beta-binomial?

= We have
L(y) = /@ p(y/6)m(6)d0

_ /0 1 <Z) 0"(1— 0" — (i’ ARSI

B (Z) = +;’(2,:>n —

by the integral definition of the Beta function.
= Marginal likelihood for the beta-Bernoulli follows directly.

= Deriving the marginal likelihood for conjugate distributions is often
relatively straightforward.

514 360/601L ¢
3/9



PRIOR PREDICTIVE DISTRIBUTION
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We may care about making predictions before we even see any data.

This is often useful as a way to see if the sampling distribution we have
chosen is appropriate, after integrating out all unknown parameters.

The prior predictive distribution is

p(0) = [ p(0,0)d0
= /@ p(yl6) - =(0) db.

In some sense, the prior predictive distribution marginalizes the sampling
distribution (for a single y) over the prior.

When dealing with a single y instead of 1, .. ., y,, this is just the
marginal likelihood of the data.
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POSTERIOR PREDICTIVE DISTRIBUTION
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We often care about making predictions for new data points, given the
current pbserved data.

For example, suppose y1,...,yn w Bernoulli(0).
We may wish to predict a new data point ¥, ;1.
We can do so using the posterior predictive distribution p(yn+1|y1:n)-

Why are we not including the parameter in the posterior predictive
distribution?
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POSTERIOR PREDICTIVE DISTRIBUTION

= Recall that we have conditional independence of the y's given 6.
= So,
P(Yn+1ly1n) = /@ P(Un+1,0ly1:n) dO

= /(ap(yn—f—l'e) yl:n) : 77(0|y1:n) do

- / P(Uns116) - 7(Blyrn) d6.
Q)]

= So, in some sense, the posterior predictive distribution marginalizes the
sampling distribution over the posterior.
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POSTERIOR PREDICTIVE DISTRIBUTION
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When we talk about the posterior predictive distribution for Bernoulli
data, we are really referring to p(yn+1 = 1|y1.n) and p(yn+1 = O|y1.n).

Then,

P(Ynt+1 = 1|y1:n)

/@ P(Unss = 116) - 7(6ly1.n) d6

which simplifies to what? To be done on the board!

What then is p(y,+1 = 0|y1.n)2

Posterior predictive pmf therefore takes the form

P(Ynt1|y1:n) =

What are a,, and b,,2

a%nﬂ bi;ynﬂ

a, +b,

v Yoyl = 0) L
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(GOING FORWARD...

= From here on, we will often deal with multiple data points y1, ..., y,
frequently.
= To make that obvious, we will write the Bayes rule as one of the
following
m(0) - p(Y1,- -, Ynl0
W(e‘yla'-wyn) — (..) ( . ‘..) -
f@ 7'('(9) : p(yh S yn|0)d0
(0 "P\Y a""yna
HOlgny- ) = TP 8nl9)
p(yl, so0g yn)
m(0) - L(0]y)
bly) = ,
m(6]y) 70

where y = (y1,...,9n).
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WHAT'S NEXT®

MOVE ON TO THE READINGS FOR THE NEXT MODULE!
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