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PRIORS WITH RESTRICTED SUPPORT

As we have seen, when dealing with rare events, we might expect the
true proportion to be very small.

In that case, we might want to try a restricted prior, e.g. .

Even when we don't have rare events, we might still desire some
restriction if we are certain the true proportion lies within  with 

.

It is thus often really useful to explore "truncation" on priors.

Let  probability of a randomly-selected student making an  in this
course.

You may want to rule out very low & very high values -- perhaps 
 with probability one.

How to choose a prior restricted to this interval?

Unif(0, 0.1)

(a, b)

0 < a < b < 1

θ = A

θ ∈ [0.35, 0.6]
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UNIFORM PRIORS

One possibility is to just choose a uniform prior.

When the parameter  is a probability, the typical uniform prior would
correspond to .

This is uniform on the entire  interval.

However, we can just as easily choose a uniform prior on a narrower
interval  with .

Perhaps not flexible enough.

Would be nice if we could pick a flexible beta density and then truncate
it to .

θ

Beta(1, 1)

(0, 1)

Unif(a, b) 0 < a < b < 1

(a, b)
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TRUNCATED RANDOM VARIABLES

Suppose we have some arbitrary random variable  with support 

.

For example,  has support on .

Then, we can modify the density  to have support on a sub-interval 

.

The density  truncated to  is

with  being the indicator function that returns 1 if A is true & 0

otherwise.

θ ∼ f(θ)

Θ

θ ∼ Beta(c, d) (0, 1)

f(θ)

[a, b] ∈ Θ

f(θ) [a, b]

f[a,b](θ) = ,
f(θ)1[θ ∈ [a, b]]

∫ b

a
f(θ⋆)dθ⋆

1[A]
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TRUNCATED BETA DENSITY

Suppose to characterize the prior probability of earning an A, you poll a
sample of students from a former STA 602 course and find that 10
earned an A and 10 earned a B or lower.

Therefore, you go with a  prior truncated to .

In R we can calculate the truncated beta density at p via

p <- seq(0,1,length=1000)
f1 <- dbeta(p,10,10)
f2 <- dbeta(p,10,10)*as.numeric(p>0.35 & p<0.6)/(pbeta(0.6,10,10) - pbeta(0.3,10,10))
f3 <- dunif(p,0.35,.6)
plot(p,f2,type='l',col='green4',xlim=c(0,1),ylab='Density', xlab=expression(theta),
  ylim=c(0,6))
lines(p,f1,type='l',col='blue')
lines(p,f3,type='l',col='red4')
labels <- c("beta(10,10)", "truncated beta","unif(0.35,.6)")
legend("topright", inset=.05, labels, lwd=2, lty=c(1,1,1), col=c('blue4','green4','red

Beta(10, 10) [0.35, 0.6]
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TRUNCATED BETA DENSITY

What would that look like?
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TRUNCATED BETA DENSITY

The truncated density by itself would look like
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THE INVERSE CDF METHOD

How to sample truncated random variables?

First start with the pdf for an untruncated distribution such as 
.

Suppose we then want to sample . How can we do

that? One popular method is the inverse-cdf method.

The inverse cdf is useful for generating random variables in general,
especially for generating truncated random variables.

Suppose we have , for some arbitrary continuous density .

According to probability integral transform, for any continuous random
variable , the random variable  has a  distribution.

Note that  is the cdf.

Thus, to use the inverse-cdf method to sample , first sample 

, then set .

θ ∼ Beta(c, d)

θ ∼ Beta[a,b](c, d)

θ ∼ f(θ) f

θ U = F(θ) Unif(0, 1)

F

θ ∼ f

u ∼ Unif(0, 1) θ = F −1(u)
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THE INVERSE CDF METHOD

As an example, suppose we want to sample  through the

inverse cdf method.

Very easy. Just do the following in R.

u <- runif (1, 0, 1)
theta <- qbeta(u,c,d)

That is, first sample from a uniform distribution.

Then, transform it using the inverse cdf of the  distribution.

Viola!

θ ∼ Beta(c, d)

Beta(c, d)
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THE INVERSE CDF METHOD

Back to the original problem: how to sample ?

If we had the inverse cdf of  truncated to , then we could

use the inverse cdf method. Easy enough! Let's find that inverse cdf.

Let ,  and  denote the pdf, cdf and inverse-cdf without truncation

and let .

Recall that the density  truncated to  is

Therefore, the truncated cdf

Not enough though. We need the truncated inverse cdf.

θ ∼ Beta[a,b](c, d)

Beta(c, d) [a, b]

f F F −1

A = [a, b]

f(θ) [a, b]

fA(θ) = f[a,b](θ) = = .
f(θ)1[θ ∈ [a, b]]

∫ b

a
f(θ⋆)dθ⋆

f(θ)1[θ ∈ [a, b]]

F(b) − F(a)

FA(z) = Pr[θ ≤ z] = .
F(z) − F(a)

F(b) − F(a)
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THE INVERSE CDF METHOD

To find the inverse cdf , let . That is, set

and solve for  as a function of .

Re-expressing as a function of ,

Applying the untruncated inverse cdf  to both sides, we have

F
−1

A
(u) FA(z) = u

u = FA(z) =
F(z) − F(a)

F(b) − F(a)

z u

F(z)

F(z) = {F(b) − F(a)}u + F(a).

F −1

z = F
−1[{F(b) − F(a)}u + F(a)] = F

−1
A

(u).
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THE INVERSE CDF METHOD

We now have all the pieces to use the inverse-cdf method to sample 
, that is,  truncated to A.

First draw a  random variable

u <- runif (1, 0, 1)

Next, apply the linear transformation:

Finally, plug  into the untruncated cdf .

Note we can equivalently sample .

θ ∼ fA f

Unif(0, 1)

u⋆ = {F(b) − F(a)}u + F(a).

u⋆ θ = F −1(u⋆)

u⋆ ∼ runif(1, F(a), F(b))
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WHAT'S NEXT?

MOVE ON TO THE READINGS FOR THE NEXT MODULE!
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