STA 360/602L: MODULE 2.7

GAMMA-POISSON MODEL I

DR. OLANREWAJU MICHAEL AKANDE

POISSON DISTRIBUTION RECAP

- $Y_1, \ldots, Y_n \stackrel{iid}{\sim} \text{Poisson}(\theta)$ denotes that each Y_i is a Poisson random variable.
- The Poisson distribution is commonly used to model count data consisting of the number of events in a given time interval.
- Some examples: # children, # lifetime romantic partners, # songs on iPhone, # tumors on mouse, etc.
- The Poisson distribution is parameterized by θ and the pmf is given by

$$\Pr[Y_i=y_i| heta]=rac{ heta^{y_i}e^{- heta}}{y_i!}; \hspace{1em} y_i=0,1,2,\ldots; \hspace{1em} heta>0.$$

where

$$\mathbb{E}[Y_i] = \mathbb{V}[Y_i] = heta.$$

What is the joint likelihood? What is the best guess (MLE) for the Poisson parameter? What is the sufficient statistic for the Poisson parameter?

GAMMA DENSITY RECAP

- The gamma density will be useful as a prior for parameters that are strictly positive.
- If $heta \sim \operatorname{Ga}(a,b)$, we have the pdf

$$p(heta) = rac{b^a}{\Gamma(a)} heta^{a-1}e^{-b heta}$$

where a is known as the shape parameter and b, the rate parameter.

- Another parameterization uses the scale parameter $\phi = 1/b$ instead of b.
- Some properties:

•
$$\mathbb{E}[\theta] = \frac{a}{b}$$

• $\mathbb{V}[\theta] = \frac{a}{b^2}$
• $\operatorname{Mode}[\theta] = \frac{a-1}{b}$ for $a \ge 1$

GAMMA DENSITY

 If our prior guess of the expected count is μ & we have a prior "scale" φ, we can let

$$\mathbb{E}[heta]=\mu=rac{a}{b}; \;\; \mathbb{V}[heta]=\mu\phi=rac{a}{b^2},$$

and solve for *a*, *b*. We can play the same game if we have a prior variance or standard deviation.

- More properties:
 - If $\theta_1, \ldots, \theta_p \stackrel{ind}{\sim} \operatorname{Ga}(a_i, b)$, then $\sum_i \theta_i \sim \operatorname{Ga}(\sum_i a_i, b)$.
 - If $heta \sim \operatorname{Ga}(a,b)$, then for any c>0, $c heta \sim \operatorname{Ga}(a,b/c)$.
 - If $\theta \sim Ga(a, b)$, then $1/\theta$ has an Inverse-Gamma distribution. We'll take advantage of these soon!

EXAMPLE GAMMA DISTRIBUTIONS

R has the option to specify either the rate or scale parameter so always make sure to specify correctly when using "dgamma", "rgamma", etc!.

GAMMA-POISSON

Generally, it turns out that

Poisson data:

 $p(y_i| heta): y_1, \dots, y_n \stackrel{iid}{\sim} \mathrm{Poisson}(heta)$

+ Gamma Prior:

$$\pi(heta) = rac{b^a}{\Gamma(a)} heta^{a-1} e^{-b heta} = \operatorname{Ga}(a,b) \; ,$$

 \Rightarrow Gamma posterior:

$$\pi(heta|\{y_i\}): heta|\{y_i\}\sim \mathrm{Ga}(a+\sum y_i,b+n).$$

That is, updating a gamma prior with a Poisson likelihood leads to a gamma posterior – we once again have conjugacy.

Can we derive the posterior distribution and its parameters? Let's do some work on the board.

GAMMA-POISSON

- With $\pi(heta|\{y_i\}) = \operatorname{Ga}(a + \sum y_i, b + n)$, we can think of
 - *b* as the "number prior of observations" from some past data, and
 - *a* as the "sum of the counts from the *b* prior observations".
- Using the properties of the gamma distribution, we have

•
$$\mathbb{E}[heta|\{y_i\}] = rac{a+\sum y_i}{b+n}$$

•
$$\mathbb{V}[heta|\{y_i\}] = rac{a+\sum y_i}{(b+n)^2}$$

 So, as we did with the beta-binomial, we can once again write the posterior expectation as a weighted average of prior and data.

$$\mathbb{E}(heta|\{y_i\}) = rac{a+\sum y_i}{b+n} = rac{b}{b+n} imes ext{prior mean} + rac{n}{b+n} imes ext{MLE}.$$

 Again, as we get more and more data, the majority of our information about θ comes from the data as opposed to the prior.

- Survey data on educational attainment and number of children of 155 forty-year-old women during the 1990's.
- These women were in their 20s during the 1970s, a period of historically low fertility rates in the US.
- **Goal**: compare birth rate θ_1 for women with bachelor's degrees to the rate θ_2 for women without.
- Data:
 - 111 women without a bachelor's degree had 217 children: $(\bar{y}_1=1.95)$
 - 44 women with bachelor's degrees had 66 children: (\$\overline{y}_2 = 1.50\$)
- Based on the data alone, looks like θ₁ should be greater than θ₂.
 But...how sure are we?
- **Priors**: $\theta_1, \theta_2 \sim Ga(2, 1)$ (not much prior information; equivalent to 1 prior woman with 2 children). Posterior means will be close to the MLEs.

- Then,
 - $\theta_1 | \{ n_1 = 111, \sum y_{i,1} = 217 \} \sim \operatorname{Ga}(2 + 217, 1 + 111) = \operatorname{Ga}(219, 112).$
 - $\theta_2 | \{ n_2 = 44, \sum y_{i,2} = 66 \} \sim \operatorname{Ga}(2 + 66, 1 + 44) = \operatorname{Ga}(68, 45).$
- Use R to calculate posterior means and 95% CIs for θ_1 and θ_2 .

```
a=2; b=1; #prior
n1=111; sumy1=217; n2=44; sumy2=66 #data
(a+sumy1)/(b+n1); (a+sumy2)/(b+n2); #post means
qgamma(c(0.025, 0.975),a+sumy1,b+n1) #95\% ci 1
qgamma(c(0.025, 0.975),a+sumy2,b+n2) #95\% ci 2
```

- Posterior means: $\mathbb{E}[heta_1|\{y_{i,1}\}] = 1.955$ and $\mathbb{E}[heta_2|\{y_{i,2}\}] = 1.511$.
- 95% credible intervals
 - *θ*₁: [1.71, 2.22].
 - θ₂: [1.17, 1.89].

Prior and posteriors:

- Posteriors indicate considerable evidence birth rates are higher among women without bachelor's degrees.
- Confirms what we observed.
- Using sampling we can quickly calculate $Pr(\theta_1 > \theta_2 | data)$.

mean(rgamma(10000,219,112)>rgamma(10000,68,45))

We have $\Pr(\theta_1 > \theta_2 | \text{data}) = 0.97$.

- Why/how does it work?
- Monte Carlo approximation coming soon!
- Clearly, that probability will change with different priors.

WHAT'S NEXT?

MOVE ON TO THE READINGS FOR THE NEXT MODULE!

