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POISSON DISTRIBUTION RECAP

STA 360/602L

Yi,...,v, % Poisson(f) denotes that each Y; is a Poisson random
variable.

The Poisson distribution is commonly used to model count data consisting
of the number of events in a given time interval.

Some examples: # children, # lifetime romantic partners, # songs on
iPhone, # tumors on mouse, etc.

The Poisson distribution is parameterized by 6 and the pmf is given by

@Yie?
)
y.l

Zo

Pr[Y; = y;l6] =

¥y, =0,1,2,...; 0 > 0.

where

What is the joint likelihood2 What is the best guess (MLE) for the Poisson
parameter? What is the sufficient statistic for the Poisson parameter?

2/ 12



(GAMMA DENSITY RECAP

» The gamma density will be useful as a prior for parameters that are
strictly positive.

= If § ~ Ga(a,b), we have the pdf

. b a—1 —bo
p(0) = I‘(a)e e .

where a is known as the shape parameter and b, the rate parameter.
= Another parameterization uses the scale parameter ¢ = 1/b instead of b.

= Some properties:

a
= E[] = D
a
a—1
= Model|f] = for a >1
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GAMMA DENSITY

= If our prior guess of the expected count is 1 & we have a prior "scale" ¢,
we can let

Elf) = p =35 Vo] =né = 5,

and solve for a, b. We can play the same game if we have a prior
variance or standard deviation.

= More properties:
= 1£6y,...,0, ™ Ga(a;,b), then 3. 6; ~ Ga(3>>, as, b).

» If § ~ Ga(a,b), then for any ¢ > 0, cf ~ Ga(a,b/c).

» If 6 ~ Ga(a,b), then 1/0 has an Inverse-Gamma distribution. We'll
take advantage of these soon!
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EXAMPLE GAMMA DISTRIBUTIONS
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R has the option to specify either the rate or scale parameter so always

make sure to specify correctly when using "dgamma","rgamma", etc!.
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GAMMA-PoOISSON

Generally, it turns out that
Poisson data:
p(Yil0) : Y1y -5 Yn ) Poisson(0)

+ Gamma Prior:

a

7(6) = %ealeb" = Ga(a,b)

= Gamma posterior:
(6 {y:}) : 6|{y:} ~ Ga(a+ ) yi,b+n).

That is, updating a gamma prior with a Poisson likelihood leads to a gamma
posterior - we once again have conjugacy.

Can we derive the posterior distribution and its parameters? Let's do some
work on the board.
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GAMMA-PoOISSON

With 7(0/{y;}) = Ga(a + >_ i, b+ n), we can think of

» b as the "number prior of observations" from some past data, and

» @ as the "sum of the counts from the b prior observations".

Using the properties of the gamma distribution, we have

. Bl (u)] = =
VY] = S

So, as we did with the beta-binomial, we can once again write the
posterior expectation as a weighted average of prior and data.

a + i b
2y = X prior mean + x MLE.

b+n  b+n b+n

E(0{y:}) =

Again, as we get more and more data, the majority of our information

ey about 6 comes from the data as opposed to the prior. 7712



HOFF EXAMPLE: BIRTH RATES

= Survey data on educational attainment and number of children of 155
forty-year-old women during the 1990's.

= These women were in their 20s during the 1970s, a period of historically
low fertility rates in the US.

» Goal: compare birth rate 8; for women with bachelor's degrees to the
rate > for women without.

= Data:

= 111 women without a bachelor's degree had 217 children:
(5, = 1.95)
» 44 women with bachelor's degrees had 66 children: (7, = 1.50)

= Based on the data alone, looks like 6; should be greater than 6.
But...how sure are we?

= Priors: 01,05 ~ Ga(2,1) (not much prior information; equivalent to 1

sz Prior woman with 2 children). Posterior means will be close to the MLEs.
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HOFF EXAMPLE: BIRTH RATES

Then,

s 01{ny =111, yi1 = 217} ~ Ga(2 + 217,1 + 111) = Ga(219, 112).

L 02|{n2 =44, Z Yi2 = 66} ~ Ga(2 + 66,1 + 44) = Ga(68, 45)

Use R to calculate posterior means and 95% Cls for 6; and 6,.

a=2; b=1l; #prior

nl=111; sumyl=217; n2=44; sumy2=66 #data
(atsumyl) /(b+nl); (a+sumy2)/(b+n2); #post means
ggamma(c(0.025, 0.975),a+sumyl,b+nl) #95\% c7 1
ggamma(c(0.025, 0.975),a+sumy2,b+n2) #95\% ci 2

Posterior means: E[6; |{y;1}] = 1.955 and E[f|{y;2}] = 1.511.

95% credible intervals

« 0,:[1.71,2.22].
« 0,: [1.17, 1.89].
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HOFF EXAMPLE: BIRTH RATES

Prior and posteriors:

>
=
[72]
c
(0]
©
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HOFF EXAMPLE: BIRTH RATES

= Posteriors indicate considerable evidence birth rates are higher among
women without bachelor's degrees.

= Confirms what we observed.

= Using sampling we can quickly calculate Pr(6; > 6;|data).
mean (rgamma (10000,219,112)>rgamma (10000,68,45))
We have Pr(6; > 6,|data) = 0.97.

= Why/how does it work?

= Monte Carlo approximation coming soon!

= Clearly, that probability will change with different priors.
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WHAT'S NEXT®

MOVE ON TO THE READINGS FOR THE NEXT MODULE!
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