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MONTE CARLO APPROXIMATION

= Monte Carlo integration is very key for Bayesian computation and using
simulations in general.

= While we will focus on using Monte Carlo integration for Bayesian
inference, the development is general and applies to any pdf/pmf p(6).

» For our purposes, we will want to evaluate expectations of the form
1~ [ (o) p(6)ds

for many different functions A(.) (usually scalar for us).
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MONTE CARLO APPROXIMATION

= Procedure:
ind

1. Generate a random sample 61, ...,0,, ~ p(0).

2. Estimate H using

= In this course, p(6) would often be the posterior distribution 7(6|y).
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MONTE CARLO APPROXIMATION

STA 360/602L

= We have E[h(6;)] = H.

= Assuming E[h?(6;)] < oo, so that the variance of each h(6;) is finite, we

have

1.LIN: 2 55 H.

2. CLT: h — H is is asymptotically normal, with asymptotic variance

— [ ) - mppe)a0,

which can be approximated by

1 m
o= e Sl

m =1

pq

= /v, is often called the Monte Carlo standard error.
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MONTE CARLO APPROXIMATION

= That is, generally, taking large Monte Carlo sample sizes m (in the
thousands or tens of thousands) can yield very precise, and cheaply
computed, numerical approximations to mathematically difficult integrals.

» What this means for us: we can approximate just about any aspect of the
posterior distribution with a large enough Monte Carlo sample.
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MONTE CARLO APPROXIMATION

= For samples 04, .. .,6,, drawn iid from 7(0|y), as m — oo, we have

_ 1 m
P 0= 20— Efoly

1 m _
e o= 3007 - Vol
m—1;5
1 m P <
e LS < g = FUEC b <y
m ;4 m

0 [%th percentile of (01,...,0,), (1 — %)th percentile of (61, ...,0,)]

— 100 x (1 — ) quantile-based credible interval.
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BACK TO BIRTH RATES

= Suppose we randomly sample two "new" women, one with degree and
one without.

= To what extent do we expect the one without the degree to have more
kids than the other, e.g. §; > §5|Y11,- -+, Yings Y21, - - -, Y2n,

= Using R,

set.seed(01222020)

a <- 23 b <- 1 #prior

nl <- 111; sumyl <- 217; n2 <- 44; sumy2 <- 66 #data

yl_pred <- rnbinom(100000,size=(a+sumyl) ,mu=(a+sumyl)/(b+nl))
y2_pred <- rnbinom(10000,size=(a+sumy2) ,mu=(a+sumy2)/(b+n2))
mean(yl_pred > y2_pred)

## [1] 0.48218
mean(yl_pred == y2_pred)

## [1] 0.21842
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BACK TO BIRTH RATES

= That is, Pl‘(gl > g2{y11, ce oy Ylngy Y21, - - - 7y2n2) ~ 0.48 and
Pr(g; = @aly11s -+, Ying, Y215 - - - Yomy) ~ 0.22.

= Notice that strong evidence of difference between two populations does
not really imply the difference in predictions is large.
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MONTE CARLO APPROXIMATION
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This general idea of using samples to "approximate" averages
(expectations) is also useful when trying to approximate posterior
predictive distributions.

Quite often, we are able to sample from p(y;|0) and 7(6|{y;}) but not
from p(yn11|y1.n) directly.

We can do so indirectly using the following Monte Carlo procedure:

sample 0'") ~ 7(0|{y}), then sample ) ~ f(yn11/6™)

sample 02 ~ 7(9|{y;}), then sample y* ~ f(y11/6®)

sample 8™ ~ 7(6]{y;}), then sample y") ~ F(y,1/6™).

The sequence {(0,v,:1)Y, ..., (6, yni1)™} constitutes m independent
samples from the joint posterior of (0,Y,,;1).

1
In fact, {%(7,421"
predictive distribution we care about.

. 797(;1)1} are independent draws from the posterior
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BACK TO BIRTH RATES

= Let's re-compute Pr(§; > §5|y11,- -+, Ying, Y21, - - - » Y2n,) and
Pr(§; = ¥aly11, - -, Yin» Y21, - - -, Y2n,) Using this method.

= Using R,

set.seed(01222020)

a <- 2; b <= 1; #prior

nl <- 111; sumyl <- 217; n2 <- 44; sumy2 <- 66 #data

thetal_pred <- rgamma(10000,219,112); theta2_pred <- rgamma(10000,68,45)
yl_pred <- rpois(10000,thetal_pred); y2_pred <- rpois(10000,theta2_pred)
mean(yl_pred > y2_pred)

## [1] 0.4765
mean(yl_pred == y2_pred)

## [1] 0.2167

= Again, Pr(§; > 95|y11,- - Yiny, Y21, - - -, Y2n,) ~ 0.48 and
Pr(gl — g2|y117 e 7y1n1, y21) e o 7y2’n,2) ~ 0.22.

T 10/ 11



STA 360/602L

WHAT'S NEXT®

MOVE ON TO THE READINGS FOR THE NEXT MODULE!
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