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MOTIVATING EXAMPLE: JOB TRAINING

In the 1970s, researchers in the U.S. ran several randomized
experiments intended to evaluate public policy programs.

One of the most famous experiments is the National Supported Work
(NSW) Demonstration, in which researchers wanted to assess whether or
not job training for disadvantaged workers had an effect on their wages.

Eligible workers were randomly assigned either to receive job training or
not to receive job training.

Candidates eligible for the NSW were randomized into the program
between March 1975 and July 1977.

For more details, read Lalonde, R. J. (1986) and Dehejia, R., and
Wahba, S. (1999).
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MOTIVATING EXAMPLE: JOB TRAINING

Setup:

Pre-training wages: real annual earnings in 1974 before training.

Two groups: some participants received job training and the rest did
not.

Post-training wages: real annual earnings in 1978 upon
completion of training.

Question of interest: is there evidence that workers who receive job
training tend to earn higher wages than workers who do not receive job
training?

The original study really is a causal inference setup, but the data used in
this example only uses a subset of the data.

The data is richer than what we will use it for (i.e., there are covariates
we can control for) but we will only focus on the pre and post wages for
the two groups.
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JOB TRAINING: THE DATA

Data:

No training group (N): sample size .

Training group (T): sample size .

Diff wages: Post-training wages -- Pre-training wages.

Summary statistics for change in annual earnings:

; 

; 

Wages/income are well known to be approximately normally distributed.
Let's look at the distribution of "change in annual earnings" for the two
groups.

nN = 429

nA = 185

ȳN = 1364.93 sN = 7460.05

ȳT = 4253.57 sT = 8926.99
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JOB TRAINING: THE DATA

Not completely normal but not too far off either. Lots of overlap between the
two groups.
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MODEL FOR CHANGES IN EARNINGS

Want posterior distribution of . Specifically, we would like to

compute  or equivalently, .

Inference for  can be complicated in frequentist paradigm when 

.

Use approximate -distributions based on the Welch-Satterthwaite
degrees of freedom.

Trivial with Bayesian inference

By the way, also trivial to compute  with Bayesian

inference, which we will do later.

How to do posterior inference for such normal models?
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ANOTHER EXAMPLE: PYGMALION STUDY

Pygmalion effect is a phenomenon where expectation affects
performance.

Question of interest: do teachers' expectations impact academic
development of children?

Setup:

Researchers gave IQ test to elementary school children.

Randomly picked six children & told teachers that the test predicts
them to have high potential for accelerated growth.

They randomly picked six children and told teachers that the test
predicts them to have NO potential for growth.

At end of school year, they gave IQ test again to all students.

They recorded the change in IQ scores of each student.
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ANOTHER EXAMPLE: PYGMALION STUDY

Data:

Accelerated group (A): 20, 10, 19, 15, 9, 18.

No growth group (N): 3, 2, 6, 10, 11, 5.

Summary statistics:

; .

; .

IQ test scores are also well known to be approximately normally
distributed.

Can't really check this assumption with only  observations.

ȳA = 15.2 sA = 4.71

ȳN = 6.2 sN = 3.65

n = 6
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MODEL FOR CHANGES IN SCORES

Once again, we want posterior distribution of .

As before, we would like to compute 
.

We would also like to compute .

To answer both questions, let's learn the Bayesian normal model.

y
(A)
i ∼ N (μA, σ2

A
)

y
(N)

i ∼ N (μN , σ2
N )

μA − μN

Pr[μA > μN |YA, YN ) ≡ Pr[μA − μN > 0|YA, YN )

Pr[σ2
A > σ2

N |YA, YN )
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NORMAL DISTRIBUTION

A random variable  has a normal distribution, written as ,

if the pdf is

where  is the mean and  is the variance.

It is also common (and would often be more convenient for our purposes)
to write the pdf in terms of precision, , where .

In that case, the pdf is instead

Y Y ∼ N (μ, σ2)

p(y; μ, σ2) =  e
−

;    y ∈ (−∞, ∞),   μ ∈ (−∞, ∞),   σ ∈ (0, ∞).
1

√2πσ2

(y − μ)2

2σ2

μ σ2

τ τ = 1/σ2

p(y; μ, σ2) = τ  e− τ(y−μ)2
;    y ∈ (−∞, ∞),   μ ∈ (−∞, ∞),   τ ∈ (0, ∞).
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EXAMPLE NORMAL DISTRIBUTIONS
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COMMENTS ON THE NORMAL DISTRIBUTION

It is amazing how often real data are close to normally distributed.

Likely a consequence of CLT -- sums and means of independent random
variables tend to be approximately normally distributed.

Occurs under very general conditions.

Normality?

Height, weight and other body measurements,

Income\wages\earnings,

Cumulative hydrologic measures such as annual rainfall or monthly
river discharge,

Errors in astronomical or physical observations,

Many more examples!
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PROPERTIES OF THE NORMAL DISTRIBUTION

Mean, median and mode are all the same .

Symmetric about the mean .

95% of the density (95% probability) within  (approximately two
standard deviations) of the mean.

If  and  with , then

for constants  and .

When independence does not hold, the sum of two normally distributed
random variables is still normally distributed.

However, when that is the case, we must account for the correlation in
the variance term.

(μ)

μ

±1.96σ

X ∼ N (θ, s2) Y ∼ N (μ, σ2) X ⊥ Y

aX + bY ∼ N (aθ + bμ, a2s2 + b2σ2),

a b
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NOTES ON NORMAL DISTRIBUTION IN R
rnorm, dnorm, pnorm, qnorm in R take mean and standard deviation  as
arguments.

If you use the variance  instead you will get wrong answers!

For example, rnorm(n,m,s) generates  normal random variables with mean
 and standard deviation , that is, .

σ

σ
2

n

m s N (m, s
2)
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WHAT'S NEXT?

MOVE ON TO THE READINGS FOR THE NEXT MODULE!
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