STA 360/602L: Mobute 3.5

THE NORMAL MODEL: JOINT INFERENCE FOR
MEAN AND VARIANCE

DRrR. OLANREWAJU MICHAEL AKANDE

STA 360/602L

1/16



JOINT INFERENCE FOR MEAN AND
VARIANCE
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We have derived the posterior for the p, conditional on o/ 7 being
known. What happens when o/ 7 is unknown? We need a joint prior
m(p, 0?) for u and o2.

Werite the joint prior distribution for the mean and variance as the
product of a conditional and a marginal distribution. That is,

m(pu,0?) = m(plo*)m(o?).

From the previous module, we have seen that we can set the conditional
prior m(u|o?) to be a normal distribution.

For m(c?), we need a distribution with support on (0, 00). One such
family is the gamma family, but this is NOT conjugate for the variance of
a normal distribution.

The gamma distribution is, however, conjugate for the precision 7, and in
that case, we say that o2 has an inverse-gamma distribution.
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JOINT INFERENCE FOR MEAN AND
VARIANCE

= Recall that conjugacy means that for a prior 7(0) in a class of
distributions P, 7(6]Y) is also in class P.

= However, when we have multiple parameters, the dependence structure
in the prior must also be preserved in the posterior, for conjugacy to

hold.
= So, if
m(p,0%) = w(ulo?)m(a?).

with m(i|o?) a normal distribution, and 7(0?) an inverse-gamma
distribution, we will have conjugacy if m(u, 0?|Y) can also be written as

w(1,0*Y) = m(ulo®, Y)m(a?[Y),

where 7(p|o?,Y) is also a normal distribution, and 7(c2|Y) is an inverse-

gamma distribution, just like the prior.
oricocou'
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INVERSE-GAMMA DISTRIBUTION

= As before, we will continue to work mostly in terms of the precision 7.

» That is, we will deal with the already familiar gamma distribution, instead
of the inverse-gamma distribution.

= However, as a quick review, if 0 ~ ZG(a,b), then the pdf is

p(0) = me_(‘”l)e_% for a,b> 0,
a
where
« Elf] = >
| | b2 N
N D) for a > 2,;
= Model[f] = ﬁ
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CONJUGATE PRIOR
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Once again, suppose Y = (y1, 42, --.,Yn), where each
yi ~ N(p, 7).

A conjugate joint prior is given by

2
1 vy Yoo,
7= — ~ Gamma | —

o2 27 2

1
,U,"T ~N (,U,(), —) .

RoT
This is often called a normal-gamma prior distribution.

o; is the prior guess for o2, while vy is often referred to as the "prior

2

degrees of freedom", our degree of confidence in o;.
g g 0

1

—— in the normal prior with an
RoT

We do not have conjugacy if we replace

arbitrary prior variance independent of 7/c2. To do inference in that
scenario, we need Gibbs sampling (to come soonl).
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CONJUGATE PRIOR

= So, we have

(i) = A (s, =) o - exp { —mor( — )}

= and

2 2
vy WO, " VO
(1) = Ga (70, 020> OCTT[)lexp{ ; 0}.

» Thus, the kernel of the normal-gamma prior distribution is
1 140 V(]O'g
= m(pu,7) = w(ulr) - w(r) =N | po, — | - Gamma | —=, ——
KoT 2 2

1 1 9 n_4 TI/OO'g
X T2exp —EHOT(/L—/J,O) TTTexpq —— .

A\ g
N\ -
M -~

oc m(pl|7) o (7)

= Take note of this form. When we derive the posterior kernel, we will try

to match it to this to recognize the parameters.
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POSTERIOR FOR THE MEAN GIVEN
VARIANCE, UNDER NORMAL-GAMMA PRIOR
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Based on the normal-gamma prior, we need 7(u|Y,7) and 7(7|Y).

For m(u|Y, ), we already know from the previous module that it will be
a normal distribution.

However, some algebra is required to get 7(7|Y).

Infact, we need to write the full joint posterior and go from there,
because we will need to keep some of the terms we discarded in the
derivation in the last module.

First, recall that the likelihood is

P(Y|p,7) < 77 exp {—%732(71 - 1)} exp {—%Tn(,u - g)2} .
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POSTERIOR DERIVATION

Then, 7(u,7|Y) o w(u|7) x w(7) x P(Y|u, 1)

1 1 7'1/00
X T2exp {—EK,()T(,LL MO) “lexp
“WE/:‘UQ) O(;r?'r
. 1, 1 N
X T2 eXp | — TS (n—1) ¢ exp —5 N n(p —y)
OCP(‘YT\H’T)

= exp {—%nor(u - ,LL0)2} exp {—%T'ﬂ(u S 37)2}

A 7
-~

Terms involving

2
Y TVyO, B 1
X T%TT[)ileXp {— ; 4 }7‘3 exp {—5732(11 — 1)}

- g

Terms involving 7 but NOT
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POSTERIOR DERIVATION

1 1 o
m(u, 7[Y) oc exp {—Eﬁof(u2 — 2pp0 + uﬁ)} exp {—Em(/ﬁ — 2uF + yz)}

Vv
Terms involving p

P {_’r[voag—i—sz(n—l)] }
2

- -

—~
Terms involving 7 but NOT g

= exp {—% [ror(1® — 2pp0) + Tn(p® — 217)] }

A 7

win { T [noj + s*(n — 1)] }

Terms involving p
X T%exp —l [/1 7',u2 + Tngjz] -T2 exp
2 707 0 2

A -

Terms involving 7 but NOT g

1
= exp {— ) [,uz(m— + koT) — 2u(nTy + noT,uo)} }

- -’

i { 7 [wog + s*(n — 1)] }

Terms involving p
X T%exp —l [/@ T2 —i—7’n§2] -T2 exp
2 L*07 0 2

N

Terms involving 7 but NOT p
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POSTERIOR DERIVATION

= To match the terms for the terms involving u to the normal kernel in the

prior, we need to complete the square so that we have something that
looks like the (i — po)? term in our prior.

» Recall how to complete the square. Specifically, we can write

ap® + by
as
a(p+d)* +e,
where
b
= d=—, and
2a’
b2
= ——y,
4a
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POSTERIOR DERIVATION

= First, write out the posterior again:

1 _
m(u, 7|Y) = exp {—5 [(nT + roT)p’ — 2p(nTy + KoTHo)] }

A\

vV
Terms involving p

win {7’ |:I/00'§ —|—32(n— 1)} }

1 1 9 -2 _
X T2exp —E[IioT/J/O—FTTLy] T 2 exp 5

A 7

Terms involving 7 but NOT p

n Set a* = (n7T+ ko7) and b* = (nTy + KoTHo), then complete the square
for the first part.

1
= m(p,7]Y) o< exp {_5 [a*p? — 2b* ] }

- -
-~

Terms involving p

. 1 ) L, i T Yoy + s2(n — 1)]
X T2exp —E[K,OT,LLO—I—T’n,y} T 2 €eXp § — B

.

Terms involving 7 but NOT g
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POSTERIOR DERIVATION

1 1 * b* ? (b*)2 1 2 —2
= w(p,7]Y) o< T2exp —5@ M—? + - exp ——[IioT,LLO—i—T’n,y]

o 2

i { T [nog + s*(n — 1)] }

X T 2 “exp 5

2 *) 2
1 1 b 1 o, o (&)
= T2eXp{—§a*[N—;] }exp{—§[ﬂ07uo+7ny "

- -’
-~

Next, substitute the values for a* and b* back

wn {_ T [noj + s*(n — 1)] }

X T 2 “exp 5

1 1 * b* 2 1 9 _9 (nTﬂ aF K/OT,LL())z
= T2exp —Ea 10— py exp 3 KOT g + TRY™ — T )

A 7

VvV
Next, expand terms and recombine

win { T [nog + s*(n — 1)] }

X T 2 “exp 5
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POSTERIOR DERIVATION

2
1 I b*
= 7w, 1Y) o Tzexp{—aa {u—;} } exp{——

vptn

nkoT2 (5 — 2p0y + §2)
T(ko + n)

X T 2 exp 5

1 I b1’
= T2exp 3¢ [k exp{ ——

) { T [1/00'3 + s%(n — 1)}

nko(§ — to)?

wtn { T[V003+S2(n—1)}
X T 2 “expl —

2

1 { 11 wr}
= T2€eXp ——a (p— —
2 a*

A 7

~—
Substitute the values for a* and b* back

win { 7 [og + s*(n — 1)]
X T 2 “expy —

2
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}

T nko(§ — wo)?

)
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POSTERIOR DERIVATION

1 1 (nTg + KoTio) 1°
= m(p,7|Y) < T2exp {—E(nT + KoT) {,u — (T o) }

A - g
v

Normal Kernel

AR T 2 2 nko _ 2
X T3 L B I s 7
T exp { 5 {Voao +s°(n—1)+ (ko £ 1) (y — po) ] }

N 7

-~

Gamma Kernel

R {%T(KO - (ot +n§)r}

(ko +mn)
Normz;HKernel
A g T 2, .2 nky _ 2
X —— —1 —(y —
T2 exp{ 5 |:1/00'0—|—8 (n—1)+ (ko - ) (y — wo) ]}

N g

N
Gamma Kernel
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POSTERIOR DERIVATION

1 2
) x Gamma (1/2" : V”;") =7(u|lY,r)n(r|Y),

RnT

(i 7lY) = N (un,

where

Kp =Ko+ 1N

Koo + ny Ko n
pn = ———— = —po +—Y
Kn K

K"I‘L n
V, =1V +n

9 1
n

nk
o :—[Voo§+s2(n—1)—i— .

Up

(¥ — o) ] :Vin V003+i(yi—§)2 el (y po)’

Kn

» Turns out that the marginal posterior of p, that is,
(YY) = fo 7(u, 7|Y)d7 is a t-distribution.

= You can derive that distribution if you are interested, we won't spend time

on it in class. We will be able to sample from it through Monte Carlo
anyway.

! 15/ 16



STA 360/602L

WHAT'S NEXT®

MOVE ON TO THE READINGS FOR THE NEXT MODULE!
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