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NONINFORMATIVE AND IMPROPER PRIORS

Generally, we must specify both  and  to do inference.

When prior distributions have no population basis, that is, there is no
justification of the prior as "prior data", prior distributions can be difficult
to construct.

To that end, there is often the desire to construct noninformative priors,
with the rationale being "to let the data speak for themselves".

For example, we could instead assume a uniform prior on  that is

constant over the real line, i.e.,   all values on the real line

are equally likely apriori.

Clearly, this is not a valid pdf since it will not integrate to 1 over the real
line. Such priors are known as improper priors.

An improper prior can still be very useful, we just need to ensure it results
in a proper posterior.

μ0 τ0

μ

π(μ) ∝ 1 ⇒
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JEFFREYS' PRIOR

Question: is there a prior pdf (for a given model) that would be
universally accepted as a noninformative prior?

Laplace proposed the uniform distribution. This proposal lacks invariance
under monotone transformations of the parameter.

For example, a uniform prior on the binomial proportion parameter  is

not the same as a uniform prior on the odds parameter .

A more acceptable approach was introduced by Jeffreys. For single
parameter models, the Jeffreys' prior defines a noninformative prior
density of a parameter  as

where  is the Fisher information for .

θ
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θ

1 − θ
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JEFFREYS' PRIOR

The Fisher information gives a way to measure the amount of information
a random variable  carries about an unknown parameter  of a
distribution that describes .

Formally,  is defined as

Alternatively,

Turns out that the Jeffreys' prior for  under the normal model, when 

is known, is

the uniform prior over the real line. Let's derive this on the board.

Y θ

Y

I(θ)

I(θ) = E[( log p(y|θ))
2
∣∣∣θ] = ∫

Y

( log p(y|θ))
2

p(y|θ)dy.
∂

∂θ

∂

∂θ

I(θ) = −E [ log p(y|θ)∣∣∣θ] = − ∫
Y

( log p(y|θ)) p(y|θ)dy.
∂2

∂2θ

∂2

∂2θ
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INFERENCE FOR MEAN, CONDITIONAL ON

VARIANCE USING JEFFREYS' PRIOR

Recall that for  known, the normal likelihood simplifies to

ignoring everything else that does not depend on .

With the Jeffreys' prior , can we derive the posterior

distribution?

σ2

∝  exp{− τn(μ − ȳ)2} ,
1

2

μ

π(μ) ∝ 1
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INFERENCE FOR MEAN, CONDITIONAL ON

VARIANCE USING JEFFREYS' PRIOR

Posterior:

This is the kernel of a normal distribution with

mean , and

precision  or variance .

Written differently, we have 

This should look familiar to you. Does it?

π(μ|Y , τ)  ∝  exp{− τn(μ − ȳ)2}π(μ)

∝  exp{− τn(μ − ȳ)2} .
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1
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n

μ|Y , σ2 ∼ N (ȳ , )
σ2

n
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IMPROPER PRIOR

Let's be very objective with the prior selection. In fact, let's be extreme!

If we let the normal variance  then our prior on  is  (recall

the Jeffreys' prior on  for known ).

If we let the gamma variance get very large (e.g., ), then the

prior on  is .

 is improper (does not integrate to 1) but does lead to a

proper posterior distribution that yields inferences similar to frequentist
ones.

For that choice, we have

→ ∞ μ ∝ 1

μ σ2

a, b → 0

σ2 ∝
1

σ2

π(μ, σ2) ∝
1

σ2

μ|Y , τ ∼ N (ȳ , )

τ|Y ∼ Gamma( , )

1

nτ

n − 1

2

(n − 1)s2

2
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ANALYSIS WITH NONINFORMATIVE PRIORS

Recall the Pygmalion data:

Accelerated group (A): 20, 10, 19, 15, 9, 18.

No growth group (N): 3, 2, 6, 10, 11, 5.

Summary statistics:

; .

; .

So our joint posterior is

ȳA = 15.2 sA = 4.71

ȳN = 6.2 sN = 3.65

μA|YA, τA ∼  N (ȳA, ) = N (15.2, )

τA|YA ∼ Gamma( , ) = Gamma( , )

μN |YN , τN ∼  N (ȳN , ) = N (6.2, )

τN |YN ∼ Gamma( , ) = Gamma( , )

1

nAτA

1

6τA

nA − 1

2

(nA − 1)s2
A

2

6 − 1

2

(6 − 1)(22.17)

2

1

nN τN

1

6τN

nN − 1

2

(nN − 1)s2
A

2

6 − 1

2

(6 − 1)(13.37)

2
8 / 12



MONTE CARLO SAMPLING

It is easy to sample from these posteriors:

aA <- (6-1)/2
aN <- (6-1)/2
bA <- (6-1)*22.17/2
bN <- (6-1)*13.37/2
muA <- 15.2
muN <- 6.2
tauA_postsample_impr <- rgamma(10000,aA,bA)
thetaA_postsample_impr <- rnorm(10000,muA,sqrt(1/(6*tauA_postsample_impr)))
tauN_postsample_impr <- rgamma(10000,aN,bN)
thetaN_postsample_impr <- rnorm(10000,muN,sqrt(1/(6*tauN_postsample_impr)))
sigma2A_postsample_impr <- 1/tauA_postsample_impr
sigma2N_postsample_impr <- 1/tauN_postsample_impr
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MONTE CARLO SAMPLING

Is the average improvement for the accelerated group larger than that
for the no growth group?

What is ?

mean(thetaA_postsample_impr > thetaN_postsample_impr)

## [1] 0.9951

Is the variance of improvement scores for the accelerated group larger
than that for the no growth group?

What is ?

mean(sigma2A_postsample_impr > sigma2N_postsample_impr)

## [1] 0.7041

How does the new choice of prior affect our conclusions?

Pr[μA > μN |YA, YN )

Pr[σ2
A

> σ2
N

|YA, YN )
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RECALL THE JOB TRAINING DATA

Data:

No training group (N): sample size .

Training group (T): sample size .

Summary statistics for change in annual earnings:

; 

; 

Using the same approach we used for the Pygmalion data, answer the
questions of interest.

nN = 429

nA = 185

ȳN = 1364.93 sN = 7460.05

ȳT = 4253.57 sT = 8926.99
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WHAT'S NEXT?

MOVE ON TO THE READINGS FOR THE NEXT MODULE!
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