
STA 360/602L: MODULE 3.7

MCMC AND GIBBS SAMPLING I

DR. OLANREWAJU MICHAEL AKANDE

1 / 13



BAYESIAN INFERENCE (CONJUGACY RECAP)
As we've seen so far, Bayesian inference is based on posterior
distributions, that is,

where .

Good news: we have the numerator in this expression.

Bad news: the denominator is typically not available (may involve high
dimensional integral)!

How have we been getting by? Conjugacy! For conjugate priors, the
posterior distribution of  is available analytically.

What if a conjugate prior does not represent our prior information well,
or we have a more complex model, and our posterior is no longer in a
convenient distributional form?

π(θ|y) = = ,
π(θ) ⋅ p(y|θ)

∫
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π(
~
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π(θ) ⋅ L(θ|y)

L(y)

y = (y1, … , yn)

θ
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SOME CONJUGATE MODELS

For example, the most common conjugate models are

Prior Likelihood Posterior

beta binomial beta

gamma Poisson gamma

gamma exponential gamma

normal-gamma normal normal-gamma

beta negative-binomial beta

beta geometric beta

There are a few more we have not covered yet, for example, the
Dirichlet-multinomial model.

However, clearly, we cannot restrict ourselves to conjugate models only.
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BACK TO THE NORMAL MODEL

For example, for conjugacy in the normal model, we had

Suppose we instead wish to specify our uncertainty about  as

independent of , that is, we want . For example,

When  is not proportional to , the marginal density of  is not a

gamma density (or a density we can easily sample from).

Side note: for conjugacy, the joint posterior should also be a product of
two independent Normal and Gamma densities in  and  respectively.
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π(τ)  = Gamma( , )
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NON-CONJUGATE PRIORS

In general, conjugate priors are not available for generalized linear
models (GLMs) other than the normal linear model.

One can potentially rely on an asymptotic normal approximation.

As , the posterior distribution is normal centered on MLE.

However, even for moderate sample sizes, asymptotic approximations
may be inaccurate.

In logistic regression for example, for rare outcomes or rare binary
exposures, posterior can be highly skewed.

It is appealing to avoid any reliance on large sample assumptions and
base inferences on exact posterior.

n → ∞
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NON-CONJUGATE PRIORS

Even though we may not be able to sample from the marginal posterior
of a particular parameter when using a non-conjugate prior, sometimes,
we may still be able to sample from conditional distributions of those
parameters given all other parameters and the data.

These conditional distributions, known as full conditionals, will be very
important for us.

In our normal example with

turns out we will not be able sample easily from ,

However, as you will see, we will be able to sample from . That is

the full conditional for .

By the way, note that we already know the full conditional for , i.e., 

 from previous modules.

μ ∼ N (μ0, σ2
0) .

τ   ∼ Gamma( , ) ,
ν0
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μ|τ, Y
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FULL CONDITIONAL DISTRIBUTIONS

Goal: try to take advantage of those full conditional distributions (without
sampling directly from the marginal posteriors) to obtain samples from
the said marginal posteriors.

In our example, with , we have

where

; and

.

Review results from previous modules on the normal model if you are not
sure why this holds.

Let's see if we can figure out the other full conditional .

π(μ) = N (μ0, σ2
0)

μ|Y , τ ∼ N (μn, τ −1
n ),

μn =
+ nτȳ

μ0

σ2
0

+ nτ1

σ2
0

τn = + nτ1

σ2
0

τ|μ, Y
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FULL CONDITIONAL DISTRIBUTIONS

p(τ|μ, Y ) = =

            

=

            

∝ p(y|μ, τ)π(τ)
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FULL CONDITIONAL DISTRIBUTIONS

where

p(τ|μ, Y ) ∝ τ
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∑
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ITERATIVE SCHEME

Now we have two full conditional distributions but what we really need is
to sample from .

Actually, if we could sample from , we already know that the

draws for  and  will be from the two marginal posterior distributions.

So, we just need a scheme to sample from .

Suppose we had a single sample, say  from the marginal posterior
distribution . Then we could sample

This is what we did in the last class, so that the pair  is a

sample from the joint posterior .

 can be considered a sample from the marginal distribution of ,

which again means we can use it to sample

and so forth.

π(τ|Y )

π(μ, τ|Y )

μ τ

π(μ, τ|Y )

τ (1)

π(τ|Y )

μ(1) ∼ p(μ|τ (1), Y ).

{μ(1), τ (1)}

π(μ, τ|Y )

⇒  μ(1) μ

τ (2) ∼ p(τ|μ(1), Y ),
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GIBBS SAMPLING

So, we can use two full conditional distributions to generate
samples from the joint distribution, once we have a starting value .

Formally, this sampling scheme is known as Gibbs sampling.

Purpose: Draw from a joint distribution, say .

Method: Iterative conditional sampling

Draw 

Draw 

Purpose: Full conditional distributions have known forms, with
sampling from the full conditional distributions fairly easy.

More generally, we can use this method to generate samples of 
, the vector of  parameters of interest, from the joint

density.

τ (1)

p(μ, τ|Y )

τ (1) ∼ p(τ|μ(0), Y )

μ(1) ∼ p(μ|τ (1), Y )

θ = (θ1, … , θp) p
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GIBBS SAMPLING

Procedure:

Start with initial value .

For iterations ,

1. Sample  from the conditional posterior distribution

2. Sample  from the conditional posterior distribution

3. Similarly, sample  from the conditional posterior

distributions given current values of other parameters.

This generates a dependent sequence of parameter values.

In the next module, we will look into a simple example of how this works,
before going back to the normal model.
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WHAT'S NEXT?

MOVE ON TO THE READINGS FOR THE NEXT MODULE!
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