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EXAMPLE: BIVARIATE NORMAL

Consider

where  is known (and is the correlation between  and ).

We will review details of the multivariate normal distribution very soon
but for now, let's use this example to explore Gibbs sampling.

For this density, turns out that we have

and

While we can easily sample directly from this distribution (using the
mvtnorm or MASS packages in R), let's instead use the Gibbs sampler to draw
samples from it.

(
θ1

θ2
) ∼ N [(

0

0
) ,(

1 ρ

ρ 1
)]

ρ θ1 θ2

θ1|θ2 ∼ N (ρθ2, 1 − ρ2)

θ2|θ1 ∼ N (ρθ1, 1 − ρ2)
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BIVARIATE NORMAL

First, a few examples of the bivariate normal distribution.

( θ1

θ2

) ∼ N [( 0

0
) ,( 1 0

0 1
)]
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BIVARIATE NORMAL
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θ2
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0
) ,( 1 0

0 1
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BIVARIATE NORMAL

( θ1

θ2

) ∼ N [( 0

2
) ,( 1 0.5

0.5 2
)]
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BIVARIATE NORMAL

( θ1

θ2

) ∼ N [( 0

2
) ,( 1 0.5

0.5 2
)]
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BIVARIATE NORMAL

( θ1

θ2

) ∼ N [( 1

−1
) ,( 1 0.9

0.9 1.5
)]

7 / 15



BIVARIATE NORMAL

( θ1

θ2

) ∼ N [( 1

−1
) ,( 1 0.9

0.9 1.5
)]
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BACK TO THE EXAMPLE

Again, we have

Here's a code to do Gibbs sampling using those full conditionals:

rho <- #set correlation
S <- #set number of MCMC samples
thetamat <- matrix(0,nrow=S,ncol=2)
theta <- c(10,10) #initialize values of theta
for (s in 1:S) {
theta[1] <- rnorm(1,rho*theta[2],sqrt(1-rho^2)) #sample theta1
theta[2] <- rnorm(1,rho*theta[1],sqrt(1-rho^2)) #sample theta2
thetamat[s,] <- theta
}

Here's a code to do sample directly instead:

library(mvtnorm)
rho <- #set correlation; no need to set again once you've used previous code
S <- #set number of MCMC samples; no need to set again once you've used previous code
Mu <- c(0,0)
Sigma <- matrix(c(1,rho,rho,1),ncol=2)
thetamat_direct <- rmvnorm(S, mean = Mu,sigma = Sigma)

-->

θ1|θ2 ∼ N (ρθ2, 1 − ρ2) ;     θ2|θ1 ∼ N (ρθ1, 1 − ρ2)
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MORE CODE

See how the chain actually evolves with an overlay on the true density:

rho <- #set correlation
Sigma <- matrix(c(1,rho,rho,1),ncol=2); Mu <- c(0,0)
x.points <- seq(-3,3,length.out=100)
y.points <- x.points
z <- matrix(0,nrow=100,ncol=100)
for (i in 1:100) {
  for (j in 1:100) {
    z[i,j] <- dmvnorm(c(x.points[i],y.points[j]),mean=Mu,sigma=Sigma)
  } 
}
contour(x.points,y.points,z,xlim=c(-3,10),ylim=c(-3,10),col="orange2",
        xlab=expression(theta[1]),ylab=expression(theta[2]))

S <- #set number of MCMC samples;
thetamat <- matrix(0,nrow=S,ncol=2)
theta <- c(10,10)
points(x=theta[1],y=theta[2],col="black",pch=2)
for (s in 1:S) {
  theta[1] <- rnorm(1,rho*theta[2],sqrt(1-rho^2))
  theta[2] <- rnorm(1,rho*theta[1],sqrt(1-rho^2))
  thetamat[s,] <- theta
  if(s < 20){
    points(x=theta[1],y=theta[2],col="red4",pch=16); Sys.sleep(1)
  } else {
    points(x=theta[1],y=theta[2],col="green4",pch=16); Sys.sleep(0.1)
  }
}
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MCMC
Gibbs sampling is one of several flavors of Markov chain Monte Carlo
(MCMC).

Markov chain: a stochastic process in which future states are
independent of past states conditional on the present state.

Monte Carlo: simulation.

MCMC provides an approach for generating samples from posterior
distributions.

From these samples, we can obtain summaries (including summaries of
functions) of the posterior distribution for , our parameter of interest.θ
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HOW DOES MCMC WORK?
Let  denote the value of the  vector of

parameters at iteration .

Let  be an initial value used to start the chain (should not be

sensitive).

MCMC generates  from a distribution that depends on the data and
potentially on , but not on .

This results in a Markov chain with stationary distribution 

under some conditions on the sampling distribution.

The theory of Markov Chains (structure, convergence, reversibility,
detailed balance, stationarity, etc) is well beyond the scope of this course
so we will not dive into it.

If you are interested, consider taking courses on stochastic process.

θ(s) = (θ
(s)
1 , … , θ

(s)
p ) p × 1

s

θ(0)

θ(s)

θ(s−1) θ(1), … , θ(s−2)

π(θ|Y )
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PROPERTIES

Note: Our Markov chain is a collection of draws of  that are (slightly
we hope!) dependent on the previous draw.

The chain will wander around our parameter space, only remembering
where it had been in the last draw.

We want to have our MCMC sample size, , big enough so that we can

Move out of areas of low probability into regions of high probability
(convergence)

Move between high probability regions (good mixing)

Know our Markov chain is stationary in time (the distribution of
samples is the same for all samples, regardless of location in the
chain)

At the start of the sampling, the samples are not from the posterior
distribution. It is necessary to discard the initial samples as a burn-in to
allow convergence. We'll talk more about that in the next class.

θ

S
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DIFFERENT FLAVORS OF MCMC
The most commonly used MCMC algorithms are:

Metropolis sampling (Metropolis et al., 1953).

Metropolis-Hastings (MH) (Hastings, 1970).

Gibbs sampling (Geman & Geman, 1984; Gelfand & Smith, 1990).

Overview of Gibbs - Casella & George (1992, The American Statistician,
46, 167-174). the first two

Overview of MH - Chib & Greenberg (1995, The American Statistician).

We will get to Metropolis and Metropolis-Hastings later in the course.
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WHAT'S NEXT?

MOVE ON TO THE READINGS FOR THE NEXT MODULE!
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