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MULTIVARIATE DATA

So far we have only considered basic models with scalar/univariate
outcomes, .

In practice however, outcomes of interest are actually often multivariate,
e.g.,

Repeated measures of weight over time in a weight loss study

Measures of multiple disease markers

Tumor counts at different locations along the intestine

Longitudinal data is just a special case of multivariate data.

Interest then is often on how multiple outcomes are correlated, and on
how that correlation may change across outcomes or time points.

Y1, … , Yn
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MULTIVARIATE NORMAL DISTRIBUTION

The most common model for multivariate outcomes is the multivariate
normal distribution.

Let , where  represents the dimension of the

multivariate outcome variable for a single unit of observation.

For multiple observations,  for .

 follows a multivariate normal distribution, that is, , if

where  denotes the determinant of .

Y = (Y1, … , Yp)T p

Yi = (Yi1, … , Yip)T i = 1, … , n

Y Y ∼ Np(μ, Σ)

p(y|μ, Σ) = (2π)− |Σ|−  exp{− (y − μ)T Σ−1(y − μ)} ,
p

2

1
2

1

2

|Σ| Σ
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MULTIVARIATE NORMAL DISTRIBUTION

If , then

 is the  mean vector, that is,

 is the  positive definite and symmetric covariance matrix,

that is,

, where  denotes the covariance between  and .

 may be linearly dependent depending on the structure of ,

which characterizes the association between them.

For each , .

Y ∼ Np(μ, Σ)

μ p × 1

μ = E[Y ] = {E[Y1], … ,E[Yp]} = (μ1, … , μp)T .

Σ p × p

Σ = {σjk} σjk Yj Yk

Y1, … , Yp Σ

j = 1, … , p Yj ∼ N (μj, σjj)

4 / 13



BIVARIATE NORMAL DISTRIBUTION

In the bivariate case, we have

and .

The correlation between  and  is defined as

.

Correlation coefficient is free of the measurement units.

Y = (
Y1

Y2
) ∼ N2 [μ = (

μ1

μ2

) , Σ = (
σ11 = σ2

1 σ12

σ21 σ22 = σ2
2

)] ,

σ12 = σ21 = Cov[Y1, Y2]

Y1 Y2

ρ1,2 = = .
Cov[Y1, Y2]

√Var[Y1]√Var[Y2]

σ12

σ1σ2

−1 ≤ ρ1,2 ≤ 1
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BACK TO THE MULTIVARIATE NORMAL

There are many special properties of the multivariate normal as we will
see as we continue to work with the distribution.

First, dependence between any  and  does not depend on the other 

 variables.

Second, while generally, independence implies zero covariance,
for the normal family, the converse is also true. That is, zero
covariance also implies independence.

Thus, the covariance  carries a lot of information about marginal
relationships, especially marginal independence.

If , that is, , then

holds for any matrix square root  of , that is,  (see Cholesky
decomposition).

Yj Yk

p − 2

Σ

ϵ = (ϵ1, … , ϵp) ∼ Np(0, Ip) ϵ1, … , ϵp
iid
∼ N (0, 1)

Y = μ + Aϵ ⇒  Y ∼ Np(μ, Σ)

A Σ AAT = Σ
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CONDITIONAL DISTRIBUTIONS

Partition  as

where

 and  are ,

 and  are ,

 is , and

 is , with .

Then,

Marginal distributions are once again normal, that is,

Y = (Y1, … , Yp)T

Y = (
Y1

Y2
) ∼ Np [(

μ1

μ2

) ,(
Σ11 Σ12

Σ21 Σ22
)] ,

Y1 μ1 q × 1

Y2 μ2 (p − q) × 1

Σ11 q × q

Σ22 (p − q) × (p − q) Σ22 > 0

Y1|Y2 = y2 ∼ Nq (μ1 + Σ12Σ−1
22 (y2 − μ2), Σ11 − Σ12Σ−1

22 Σ21) .

Y1 ∼ Nq (μ1, Σ11) ;    Y2 ∼ Np−q (μ2, Σ22) .
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CONDITIONAL DISTRIBUTIONS

In the bivariate normal case with

we have

which can also be written as

Y = (
Y1

Y2
) ∼ N2 [μ = (

μ1

μ2

) , Σ = (
σ11 = σ2

1 σ12

σ21 σ22 = σ2
2

)] ,

Y1|Y2 = y2 ∼ N (μ1 + (y2 − μ2), σ2
1 − ) .

σ12

σ2
2

σ2
12

σ2
2

Y1|Y2 = y2 ∼ N (μ1 + ρ(y2 − μ2), (1 − ρ2)σ2
1) .

σ1

σ2
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MULTIVARIATE NORMAL LIKELIHOOD

Suppose , .

Write . The resulting likelihood can then be written as

It will be super useful to be able to write the likelihood in two different
formulations depending on whether we care about the posterior of  or 

.

Yi = (Yi1, … , Yip)T ∼ Np(θ, Σ) i = 1, … , n

Y = (y1, … , yn)T

p(Y |θ, Σ) =
n

∏
i=1

(2π)− |Σ|−  exp{− (yi − θ)T Σ−1(yi − θ)}

∝ |Σ|−  exp{−
n

∑
i=1

(yi − θ)T Σ−1(yi − θ)} .

p

2

1
2

1

2

n

2
1

2

θ

Σ
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MULTIVARIATE NORMAL LIKELIHOOD

For inference on , it is convenient to write  as

where .

θ p(Y |θ, Σ)

p(Y |θ, Σ) ∝ |Σ|−


does not involve θ

   ⋅   exp {−
n

∑
i=1

(yi − θ)T Σ−1(yi − θ)}

∝ exp {−
n

∑
i=1

(yT
i − θT )Σ−1(yi − θ)}

= exp

⎧⎪ ⎪
⎨
⎪ ⎪⎩

−
n

∑
i=1

⎡
⎢ ⎢
⎣

yT
i Σ−1yi


does not involve θ

−    yT
i Σ−1θ − θT Σ−1yi


same term

    +    θT Σ−1θ

⎤
⎥ ⎥
⎦

⎫⎪ ⎪
⎬
⎪ ⎪⎭

∝ exp {−
n

∑
i=1

[θT Σ−1θ − 2θT Σ−1yi]}

= exp {−
n

∑
i=1

θT Σ−1θ −
n

∑
i=1

(−2)θT Σ−1yi}

= exp {− nθT Σ−1θ + θT Σ−1
n

∑
i=1

yi}

= exp{− θT (nΣ−1)θ + θT (nΣ−1ȳ)} ,

n

2
1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

ȳ = (ȳ1, … , ȳp)T
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MULTIVARIATE NORMAL LIKELIHOOD

For inference on , we need to rewrite the likelihood a bit.

First a few results from matrix algebra:

1. , where  is the th diagonal element of a square 

 matrix , where  is the trace function (sum of diagonal

elements).

2. Cyclic property:

given that the product  is a square matrix.

3. If  is a  matrix, then for a  vector ,

holds by (1), since  is a scalar.

4. .

Σ

tr(A) = ∑
p

j=1 ajj ajj j

p × p A tr(⋅)

tr(ABC) = tr(BCA) = tr(CAB),

ABC

A p × p p × 1 x

x
T

Ax = tr(x
T

Ax)

xT Ax

tr(A + B) = tr(A) + tr(B)
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MULTIVARIATE NORMAL LIKELIHOOD

It is convenient to rewrite  as

where  is the residual sum of squares matrix.

p(Y |θ, Σ)

p(Y |θ, Σ) ∝ |Σ|−  exp {−
n

∑
i=1

(yi − θ)T Σ−1(yi − θ)}


no algebra/change yet

= |Σ|−  exp

⎧⎪ ⎪
⎨
⎪ ⎪⎩

−
n

∑
i=1

tr [(yi − θ)T Σ−1(yi − θ)]


by result 3

⎫⎪ ⎪
⎬
⎪ ⎪⎭

= |Σ|−  exp

⎧⎪ ⎪
⎨
⎪ ⎪⎩

−
n

∑
i=1

tr [(yi − θ)(yi − θ)T Σ−1]


by cyclic property

⎫⎪ ⎪
⎬
⎪ ⎪⎭

= |Σ|−  exp

⎧⎪ ⎪ ⎪ ⎪ ⎪ ⎪
⎨
⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎩

− tr [
n

∑
i=1

(yi − θ)(yi − θ)T Σ−1]


by result 4

⎫⎪ ⎪ ⎪ ⎪ ⎪ ⎪
⎬
⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎭

= |Σ|−  exp{− tr [SθΣ−1]} ,

n

2
1

2

n

2
1

2

n

2
1

2

n

2
1

2

n

2
1

2

Sθ = ∑n

i=1(yi − θ)(yi − θ)T
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WHAT'S NEXT?

MOVE ON TO THE READINGS FOR THE NEXT MODULE!
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