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MULTIVARIATE DATA

= So far we have only considered basic models with scalar/univariate
outcomes, Yi,...,Y,.

= In practice however, outcomes of interest are actually often multivariate,
e.g.

» Repeated measures of weight over time in a weight loss study
» Measures of multiple disease markers

= Tumor counts at different locations along the intestine
= Longitudinal data is just a special case of multivariate data.

= Interest then is often on how multiple outcomes are correlated, and on
how that correlation may change across outcomes or time points.
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MULTIVARIATE NORMAL DISTRIBUTION
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The most common model for multivariate outcomes is the multivariate
normal distribution.

let Y = (Y1,...,Y,), where p represents the dimension of the
multivariate outcome variable for a single unit of observation.

For multiple observations, Y; = (Yi1,...,Y;,)  fori=1,...,n.
Y follows a multivariate normal distribution, that is, Y ~ N, (i, X), if

1

p(ylp, %) = (2r) 5[5 7 exp {—g(y —p)'S Ny - u)} ,

where |X| denotes the determinant of X.
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MULTIVARIATE NORMAL DISTRIBUTION

IfY ~ N,(u,X), then
= 1 is the p X 1 mean vector, that is,
p=E[Y] = {E[Yi],...,E[Y,]} = (1, -, pp)"-

= Y is the p x p positive definite and symmetric covariance matrix,
that is,

» ¥ = {01}, where oj; denotes the covariance between Y; and Y.

= Y3,...,Y, may be linearly dependent depending on the structure of %,
which characterizes the association between them.

» Foreachj=1,...,p, Y; ~ N(uj,05)-
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BIVARIATE NORMAL DISTRIBUTION
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In the bivariate case, we have

Y; o 202 o
Y:< 1)NN—2 ,u:(,ul),z]: 11 1 12 : ,
Y, H2 021 022 = 0,

and 012 — 091 = COV[E,B].

The correlation between Y; and Y5 is defined as

Cov|Y7, Y3] 012
P12 = = .
v/ Var[Yi]y/Var[Y,] 0102

—-1<p12 <1

Correlation coefficient is free of the measurement units.
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BACK TO THE MULTIVARIATE NORMAL

= There are many special properties of the multivariate normal as we will
see as we continue to work with the distribution.

= First, dependence between any Y, and Y}, does not depend on the other
p — 2 variables.

= Second, while generally, independence implies zero covariance,
for the normal family, the converse is also true. That is, zero
covariance also implies independence.

» Thus, the covariance X carries a lot of information about marginal
relationships, especially marginal independence.

» Ife=(e,...,¢) ~N,(0,1,), that is, el,...,epifi\gl./\/(O,l), then
Y=p+Ae=Y ~ N,(n, %)

holds for any matrix square root A of %, that is, AAT = % (see Cholesky
decomposition).
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CONDITIONAL DISTRIBUTIONS

= Partiion Y = (Y3,...,Y,)T as

Y m) (211 E12>]
Y: ~
(YZ) M[(Fw ’ o1 X ’
where

» Y; and py are g x 1,

= Y5 and py are (p — q) x 1,

= Y1 is ¢ X g, and

n Yoo is (p—q) X (p— q), with X2 > 0.

= Then,
Y1|Ys = yo ~ Ny (p1 + 1225 (y2 — p2), Ti1 — T1235, Ba1)

= Marginal distributions are once again normal, that is,

Y ~ Ny (p1,211) 5 Yo ~ Npg (2, X22) .
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CONDITIONAL DISTRIBUTIONS

= In the bivariate normal case with

Y; o1 = o2 o
v (B) s fum () mm (=t ]
Y M2 021 022 = 0,
we have

2
(ox @

YilYs =1 ~ N | i+ —5 (v2 — p2), 08 — —= |-
T2 T3

which can also be written as

(o)
1)Y=y~ N (Ml + J—;P(w — p2), (1 — PZ)Uf> :
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MULTIVARIATE NORMAL LIKELIHOOD

= Suppose Y; = (Yi1,..., Vi) ~N,(0,%),i=1,...,n.

= Write Y = (y1,...,Ys)’. The resulting likelihood can then be written as

p(¥10,%) = [Jm) 312l exp { - 3~ 6)75 i - 0)|

il
n 1 &
o [X| 2 exp {5 ;(yz —0)"s Y (y; — 9)} .

= It will be super useful to be able to write the likelihood in two different

formulations depending on whether we care about the posterior of 8 or
2.
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MULTIVARIATE NORMAL LIKELIHOOD

= For inference on 0, it is convenient to write p(Y|6,X) as

n

p(Y10,8) o [57F exp{éz(yiele(yi e)}
SNS—— i=1

does not involve 6

o exp {—% Sl - 0w - e)}

=1l

1 n
=expq —3 Z |: y;fFE_lyi _ yZTE—le 0Ty y + 0T219] }
=1 ~—— ‘ ~ 4
‘ does not involve 8 same term

(672710 — 260"y, }

n 1 n
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— exp {_% 6’z o - ) Z(—z)OTEIyZ-}
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ng's0+675 > y}
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MULTIVARIATE NORMAL LIKELIHOOD

= For inference on X, we need to rewrite the likelihood a bit.

= First a few results from matrix algebra:

1. tr(A) = 2;:1 a;;j, where a;; is the jth diagonal element of a square

p X p matrix A, where tr(-) is the trace function (sum of diagonal
elements).

2. Cyclic property:
tr(ABC) = tr(BCA) = tr(CAB),

given that the product ABC' is a square matrix.

3. If Ais a p x p matrix, then for a p x 1 vector x,
xl Az = tr(z’ Az)
holds by (1), since 27 Az is a scalar.
4. tr(A + B) = tr(A) + tr(B).

. 11/13



MULTIVARIATE NORMAL LIKELIHOOD

= |t is convenient to rewrite p(Y'|0,X) as

1=1

p(Y(6,%) o |5] % exp {% zn:(yi —6)"'= (y; - 9)}

A\

no algebra/change yet

( )
_n 1 & _
=3[ T expd —5 > tr[(m—0)'S (y - 0)]
L = byr;gult3 )
( )
_n 1 & _
= |2]7? exp ! —EZtr [(yi — 0)(y: — 0)TE 1] }
’L:]. = ' =
L by cyclic property )
( )
n 1, | -
= |Z|"% exp § —tr [Z(yi—e)(y,-—e)Tz 1] \
=1
L byr;s,ult4 )

= |E|_% exp {—%tr [592_1} } ,

e, Where Sp =37 (y; — 0)(yi — 0)7 is the residual sum of squares matrix.
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WHAT'S NEXT®

MOVE ON TO THE READINGS FOR THE NEXT MODULE!
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