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READING COMPREHENSION EXAMPLE

= Twenty-two children are given a reading comprehension test before and
after receiving a particular instruction method.

» Y;: pre-instructional score for student .
» Yo: postinstructional score for student s.
= Vector of observations for each student: Y; = (Y1, Yi2)T.

» Clearly, we should expect some correlation between Y;; and Y;s.
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READING COMPREHENSION EXAMPLE

= Questions of interest:
» Do students improve in reading comprehension on average?
» If so, by how much?

» Can we predict post-test score from pre-test score?2 How correlated
are they?

» If we have students with missing pre-test scores, can we predict the
scores?

= We will hold off on the last question until we have learned about missing
data.
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READING COMPREHENSION EXAMPLE
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Since we have bivariate continuous responses for each student, and test
scores are often normally distributed, we can use a bivariate normal
model.

Model the data as Y; = (Yi1,Yi2)! ~ N2(6,X), that is,

Yii 01 o7 o1
Y- ~Nylo= (), 2= |
(Yb) 2[ (92> (021 0;)]
We can answer the first two questions of interest by looking at the
posterior distribution of 6, — 6;.

The correlation between Y; and Y5 is

012

b
0102

so we can answer the third question by looking at the posterior
distribution of p, which we have once we have posterior samples of 3.
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READING EXAMPLE: PRIOR ON MEAN
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Clearly, we first need to set the hyperparameters py and Ay in
7(0) = Na(po, Ao), based on prior belief.

For this example, both tests were actually designed apriori to have a
mean of 50, so, we can set p1o = (Ko(1), o2))” = (50,50)7.

1o = (0,0)T is also often a common choice when there is no prior guess,
especially when there is enough data to "drown out" the prior guess.

Next, we need to set values for elements of
A() _ ()‘11 A12 >
>\21 A22
It is quite reasonable to believe apriori that the true means will most

likely lie in the interval [25, 75] with high probability (perhaps 0.952),
since individual test scores should lie in the interval [0, 100].

Recall that for any normal distribution, 5% of the density will lie within
two standard deviations of the mean.
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READING EXAMPLE: PRIOR ON MEAN

Therefore, we can set

po@) £ 2¢/ A = (25,75) = 50+ 2,/ = (25, 75)
25

= 24/A1 =25 = )\11:(7> ~ 156.

Similarly, set Aos ~ 156.

Finally, we expect some correlation between 1o(1) and fig(2), but suppose
we don't know exactly how strong. We can set ’rhe prior correlation to

0.5.
A A
= 0.5 = 12 2 o A, =156 x 0.5 =T8.
v, 156
= Thus,

o (D (5 5)
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READING EXAMPLE: PRIOR ON COVARIANCE

= Next we need to set the hyperparameters vy and Sy in
(X)) = IWa (w0, So), based on prior belief.

= First, let's start with a prior guess X for X.

= Again, since individual test scores should lie in the interval [0,100], we
should set 3 so that values outside [0,100] are highly unlikely.

= Just as we did with Ay, we can use that idea to set the elements of X
0 0
_ 051) Uiz)
2=\ 0 o
Y51 g
» The identity matrix is also often a common choice for X; when there is no

prior guess, especially when there is enough data to "drown out" the
prior guess.
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READING EXAMPLE: PRIOR ON COVARIANCE

Therefore, we can set

tom £21/0) = (0,100) = 50+24/0\) = (0,100)

50 )
= 2¢/cP =50 = &Y = (7) ~ 625.

Similarly, set agg) ~ 625.

Again, we expect some correlation between Y; and Y5, but suppose we
don't know exactly how strong. We can set the prior correlation to 0.5.

0) (0)
2 012 (0)

(
1
= — 62 b =312.5.
\/W\/W = = oy, =625x0.5=3
011V %22

= 0.5 =

Thus,

5 _ (625 3125
0=\ 3125 625
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READING EXAMPLE: PRIOR ON COVARIANCE

= Recall that if we are not at all confident on a prior value for 3, but we
have a prior guess Xy, we can set
1

-y0:p+2,sothqttheE[Z]:V . 1Soisﬁnite.
0 —p—

u S() = Eo
so that X is only loosely centered around Xy.
= Thus, we can set

m yy=p+2=2+2=4
u S():EO

so that we have
625 312.5
) D (=7 (55, 25Y)
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READING EXAMPLE: DATA

Now, to the data (finally!)

Y <- as.matrix(dget("http://www2.stat.duke.edu/~pdhl0/FCBS/Inline/Y.reading"))

dim(Y)

## [1] 22 2

pretest posttest

head (Y)
H#
## [1,] 59
## [2,] 43
#4# [3,] 34
## [4,] 32
## [5,] 42
## [6,] 38
summary (Y)
H## pretest
## Min. :28.
## 1st Qu.:34.
## Median :44.
## Mean t47.
## 3rd Qu.:58.
## Max. 172,
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00
25
00
18
00
00

77
39
46
26
38
43
posttest
Min. :26.
1st Qu.:43
Median :52
Mean :53
3rd Qu.:60.
Max . :86.
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00
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READING EXAMPLE: DATA

post-test

30 40 50 60 70 80

ey
w & %
X
X %
xZX
| | I I [
30 40 50 60 70
pre-test
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READING EXAMPLE: DATA

80

70

post-test
60

50

30 40

pre-test

This is just some EDA. We will write the Gibbs sampler and answer the
sricoco'

questions of interest in the next module. 12 /13
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WHAT'S NEXT®

MOVE ON TO THE READINGS FOR THE NEXT MODULE!
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