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MOTIVATION

Sometimes, we may have a natural grouping in our data, for example

students within schools,

patients within hospitals,

voters within counties or states,

biology data, where animals are followed within natural populations
organized geographically and, in some cases, socially.

For such grouped data, we may want to do inference across all the
groups, for example, comparison of the group means.

Ideally, we should do so in a way that takes advantage of the
relationship between observations in the same group, but we should also
look to borrow information across groups when possible.

Hierarchical modeling provides a principled way to do so.
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BAYES ESTIMATORS AND BIAS

Recall the normal model:

The MLE for the population mean  is just the sample mean .

 is unbiased for . That is, for any data , .

However, recall that in the conjugate normal model with known variance
for example, the posterior expectation is a weighted average of the
prior mean and the sample mean.

That is, the posterior mean is actually biased.

yi|μ,σ2 iid
∼ N (μ,σ2) .

μ ȳ

ȳ μ yi
iid
∼ N (μ,σ2) E[ȳ ] = μ
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SHRINKAGE

Usually through the weighting of the sample data and prior, Bayes
procedures have the tendency to pull the estimate of  toward the prior

mean.

Of course, the magnitude of the pull depends on the sample size.

This "pulling" phenomenon is referred to as shrinkage.

Why would we ever want to do this? Why not just stick with the MLE?

Well, in part, because shrinkage estimators are often "more accurate" in
prediction problems -- i.e. they tend to do a better job of predicting a
future outcome or of recovering the actual parameter values. Remember
variance-bias trade off!

The fact that a biased estimator would do a better job in many prediction
problems can be proven rigorously, and is referred to as Stein's
paradox.

μ
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MODERN RELEVANCE

Stein's result implies, in particular, that the sample mean is an
inadmissible estimator of the mean of a multivariate normal distribution in

more than two dimensions -- i.e. there are other estimators that will come
closer to the true value in expectation.

In fact, these are Bayes point estimators (the posterior expectation of the
parameter ).

Most of what we do now in high-dimensional statistics is develop biased
estimators that perform better than unbiased ones.

Examples: lasso regression, ridge regression, various kinds of
hierarchical Bayesian models, etc.

So, here we will get a very basic introduction to Bayesian hierarchical
models, which provide a formal and coherent framework for constructing
shrinkage estimators.

μ
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WHY HIERARCHICAL MODELS?
Bayesian hierarchical models is a sort of catch-all phrase for a large
class of models that have several levels of conditional distributions
making up the prior.

Like simpler one-level priors, they also accomplish shrinkage. However,
they are much more flexible.

Why use them? Several reasons:

We may want to exploit more complex dependence structures.

We may have many parameters relative to the amount of data that
we have, and want to borrow information in estimating them.

We may want to shrink toward something other than a simple prior
mean/hyper-parameter.

6 / 16



COMPARING TWO GROUPS

Suppose we want to do inference on mean body mass index (BMI) for
two groups (male or female).

BMI is known to often follow a normal distribution, so let's assume the
same here.

We should expect some relationship between the mean BMI for the two
groups.

We may also think the shape of the two distributions would be relatively
the same (at least as a simplifying assumption for now).

Thus, a reasonable model might be

but with some relationship between  and .

yi,male
iid
∼ N (θm,σ2) ;   i = 1, … ,nm;

yi,female
iid
∼ N (θf ,σ2) ;   i = 1, … ,nf .

θm θf
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BAYESIAN INFERENCE

One parameterization that can reflect some relationship between  and
 is

where

 and ,

 is the average of the population means, and

 is the difference in population means.

θm
θf

yi,male
iid
∼ N (μ + δ,σ2) ;   i = 1, … ,nm;

yi,female
iid
∼ N (μ − δ,σ2) ;   i = 1, … ,nf .

θm = μ + δ θf = μ − δ

μ =
θm + θf

2

2δ = θm − θf
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BAYESIAN INFERENCE

Convenient prior:

, where

,

, and

.

π(μ, δ, σ2) = π(μ) ⋅ π(δ) ⋅ π(σ2)

π(μ) = N (μ0, γ2
0 )

π(δ) = N (δ0, τ 2
0 )

π(σ2) = IG( , )
ν0

2

ν0σ2
0

2
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BAYESIAN INFERENCE

Note that we can rewrite

as

or

as needed, so we can leverage past results for the full conditionals.

yi,male
iid
∼ N (μ + δ,σ2) ;   i = 1, … ,nm;

yi,female
iid
∼ N (μ − δ,σ2) ;   i = 1, … ,nf

(yi,male − δ)
iid
∼ N (μ,σ2) ;   i = 1, … ,nm;

(yi,female + δ)
iid
∼ N (μ,σ2) ;   i = 1, … ,nf

(yi,male − μ)
iid
∼ N (δ,σ2) ;   i = 1, … ,nm;

(−1)(yi,female − μ)
iid
∼ N (δ,σ2) ;   i = 1, … ,nf .
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FULL CONDITIONALS

For the full conditionals we will derive here, we will take advantage of
previous results from the regular univariate normal model.

Recall that if we assume

and set our priors to be

then we have

yi ∼ N (μ, σ2),   i = 1, … , n,

π(μ) = N (μ0, γ2
0) .

π(σ2) = IG( , ) ,
ν0

2

ν0σ2
0

2

π(μ, σ2|Y ) ∝ {
n

∏
i=1

p(yi|μ, σ2)} ⋅ π(μ) ⋅ π(σ2)
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FULL CONDITIONALS

We have

where

and

where

π(μ|σ2, Y ) = N (μn, γ2
n) .

γ2
n = ;         μn = γ2

n [ ȳ + μ0] ,
1

+
n

σ2

1

γ2
0

n

σ2

1

γ2
0

π(σ2|μ, Y ) = IG( , ) ,
νn

2

νnσ2
n

2

νn = ν0 + n;        σ2
n = [ν0σ2

0 +
n

∑
i=1

(yi − μ)2] .
1

νn
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FULL CONDITIONALS

With , and

we have

π(μ) = N (μ0, γ2
0 )

(yi,male − δ)
iid
∼ N (μ,σ2) ;   i = 1, … ,nm;

(yi,female + δ)
iid
∼ N (μ,σ2) ;   i = 1, … ,nf ,

μ|Y , δ,σ2 ∼ N (μn, γ2
n),    where

γ2
n =

μn = γ2
n

⎡
⎢ ⎢ ⎢ ⎢
⎣

+

⎤
⎥ ⎥ ⎥ ⎥
⎦

.

1

+
1

γ2
0

nm + nf

σ2

μ0

γ2
0

nm

∑
i=1

(yi,male − δ) +
nf

∑
i=1

(yi,female + δ)

σ2
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FULL CONDITIONALS

With , and

we have

π(δ) = N (δ0, τ 2
0 )

(yi,male − μ)
iid
∼ N (δ,σ2) ;   i = 1, … ,nm;

(−1)(yi,female − μ)
iid
∼ N (δ,σ2) ;   i = 1, … ,nf ,

δ|Y ,μ,σ2 ∼ N (δn, τ 2
n ),    where

τ 2
n =

δn = τ 2
n

⎡
⎢ ⎢ ⎢ ⎢
⎣

+

⎤
⎥ ⎥ ⎥ ⎥
⎦

.

1

+
1

τ 2
0

nm + nf

σ2

δ0

τ 2
0

nm

∑
i=1

(yi,male − μ) + (−1)
nf

∑
i=1

(yi,female − μ)

σ2
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FULL CONDITIONALS

With , and

we have

We will use write a Gibbs sampler for this model and fit the model to real
data in the next module.

π(σ2) = IG( , )
ν0

2

ν0σ
2
0

2

yi,male
iid
∼ N (μ + δ,σ2) ;   i = 1, … ,nm;

yi,female
iid
∼ N (μ − δ,σ2) ;   i = 1, … ,nf

σ2|Y ,μ, δ ∼ IG( , ),    where

νn = ν0 + nm + nf

σ2
n = [ν0σ

2
0 +

nm

∑
i=1

(yi,male − [μ + δ])2 +

nf

∑
i=1

(yi,female − [μ − δ])2] .

νn
2

νnσ
2
n

2

1

νn
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WHAT'S NEXT?

MOVE ON TO THE READINGS FOR THE NEXT MODULE!
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