class: center, middle, inverse, title-slide # STA 360/602L: Module 5.2 ## Hierarchical normal models with constant variance: two groups (illustration) ### Dr. Olanrewaju Michael Akande --- class: center, middle ### No pre-recorded video for this module. To be done during discussion session. --- ## Full conditionals recap .block[ .small[ $$ `\begin{split} \mu | Y, \delta, \sigma^2 & \sim \mathcal{N}(\mu_n, \gamma_n^2), \ \ \ \text{where}\\ \\ \gamma_n^2 & = \dfrac{1}{\dfrac{1}{\gamma_0^2} + \dfrac{n_m + n_f}{\sigma^2} }\\ \\ \mu_n & = \gamma_n^2 \left[\dfrac{\mu_0}{\gamma_0^2} + \dfrac{ \sum\limits_{i=1}^{n_m} (y_{i,male} - \delta) + \sum\limits_{i=1}^{n_f} (y_{i,female} + \delta) }{\sigma^2} \right].\\ \end{split}` $$ ] ] --- ## Full conditionals .block[ .small[ $$ `\begin{split} \delta | Y, \mu, \sigma^2 & \sim \mathcal{N}(\delta_n, \tau_n^2), \ \ \ \text{where}\\ \\ \tau_n^2 & = \dfrac{1}{\dfrac{1}{\tau_0^2} + \dfrac{n_m + n_f}{\sigma^2} }\\ \\ \delta_n & = \tau_n^2 \left[\dfrac{\delta_0}{\tau_0^2} + \dfrac{\sum\limits_{i=1}^{n_m} (y_{i,male} - \mu) + (-1) \sum\limits_{i=1}^{n_f} (y_{i,female} - \mu) }{\sigma^2} \right].\\ \end{split}` $$ ] ] --- ## Full conditionals .block[ .small[ $$ `\begin{split} \sigma^2 | Y, \mu, \delta & \sim \mathcal{IG}(\dfrac{\nu_n}{2}, \dfrac{\nu_n \sigma_n^2}{2}), \ \ \ \text{where}\\ \\ \nu_n & = \nu_0 + n_m + n_f\\ \\ \sigma_n^2 & = \dfrac{1}{\nu_n} \left[\nu_0\sigma_0^2 + \sum\limits_{i=1}^{n_m} (y_{i,male} - [\mu + \delta])^2 + \sum\limits_{i=1}^{n_f} (y_{i,female} - [\mu - \delta])^2 \right].\\ \end{split}` $$ ] ] --- ## Application to data - The data we will use in the `\(\textsf{R}\)` package `rethinking`. ```r #install.packages(c("coda","devtools","loo","dagitty")) #library(devtools) #devtools::install_github("rmcelreath/rethinking",ref="Experimental") #library(rethinking) data(Howell1) Howell1[1:15,] ``` ``` ## height weight age male ## 1 151.765 47.82561 63.0 1 ## 2 139.700 36.48581 63.0 0 ## 3 136.525 31.86484 65.0 0 ## 4 156.845 53.04191 41.0 1 ## 5 145.415 41.27687 51.0 0 ## 6 163.830 62.99259 35.0 1 ## 7 149.225 38.24348 32.0 0 ## 8 168.910 55.47997 27.0 1 ## 9 147.955 34.86988 19.0 0 ## 10 165.100 54.48774 54.0 1 ## 11 154.305 49.89512 47.0 0 ## 12 151.130 41.22017 66.0 1 ## 13 144.780 36.03221 73.0 0 ## 14 149.900 47.70000 20.0 0 ## 15 150.495 33.84930 65.3 0 ``` --- ## Application to data - For now, focus on data for individuals under age 15. ```r htm <- Howell1$height/100 bmi <- Howell1$weight/(htm^2) y_male <- bmi[Howell1$age<15 & Howell1$male==1] y_female <- bmi[Howell1$age<15 & Howell1$male==0] n_m <- length(y_male) n_f <- length(y_female) n_f ``` ``` ## [1] 84 ``` ```r n_m ``` ``` ## [1] 77 ``` ```r summary(y_male) ``` ``` ## Min. 1st Qu. Median Mean 3rd Qu. Max. ## 12.07 13.87 14.63 14.84 15.53 18.22 ``` ```r summary(y_female) ``` ``` ## Min. 1st Qu. Median Mean 3rd Qu. Max. ## 9.815 13.559 14.305 14.585 15.712 18.741 ``` --- ## Application to data - We will set the hyper-parameters as: + `\(\mu_0 = 15, \gamma_0 = 5\)`, + `\(\delta_0 = 0, \tau_0 = 3\)`, + `\(\nu_0 = 1, \sigma_0 = 5\)`. -- - <div class="question"> Do these values seem reasonable? </div> --- ## Application to data ```r #priors mu0 <- 15; gamma02 <- 5^2 delta0 <- 0; tau02 <- 3^2 nu0 <- 1; sigma02 <- 5^2 #starting values mu <- (mean(y_male) + mean(y_female))/2 delta <- (mean(y_male) - mean(y_female))/2 #no need for starting values for sigma_squared, we can sample it first MU <- DELTA <- SIGMA2 <- NULL ``` --- ## Application to data ```r #set seed set.seed(1234) #set number of iterations and burn-in n_iter <- 10000; burn_in <- 0.2*n_iter ##Gibbs sampler for (s in 1:(n_iter+burn_in)) { #update sigma2 sigma2 <- 1/rgamma(1,(nu0 + n_m + n_f)/2, (nu0*sigma02 + sum((y_male-mu-delta)^2) + sum((y_female-mu+delta)^2))/2) #update mu gamma2n <- 1/(1/gamma02 + (n_m + n_f)/sigma2) mun <- gamma2n*(mu0/gamma02 + sum(y_male-delta)/sigma2 + sum(y_female+delta)/sigma2) mu <- rnorm(1,mun,sqrt(gamma2n)) #update delta tau2n <- 1/(1/tau02 + (n_m+n_f)/sigma2) deltan <- tau2n*(delta0/tau02 + sum(y_male-mu)/sigma2 - sum(y_female-mu)/sigma2) delta <- rnorm(1,deltan,sqrt(tau2n)) #save parameter values MU <- c(MU,mu); DELTA <- c(DELTA,delta); SIGMA2 <- c(SIGMA2,sigma2) } ``` --- ## Posterior summaries ```r #library(coda) MU.mcmc <- mcmc(MU,start=1) summary(MU.mcmc) ``` ``` ## ## Iterations = 1:12000 ## Thinning interval = 1 ## Number of chains = 1 ## Sample size per chain = 12000 ## ## 1. Empirical mean and standard deviation for each variable, ## plus standard error of the mean: ## ## Mean SD Naive SE Time-series SE ## 14.712517 0.118765 0.001084 0.001089 ## ## 2. Quantiles for each variable: ## ## 2.5% 25% 50% 75% 97.5% ## 14.48 14.63 14.71 14.79 14.95 ``` ```r (mean(y_male) + mean(y_female))/2 #compare to data ``` ``` ## [1] 14.7127 ``` --- ## Posterior summaries ```r DELTA.mcmc <- mcmc(DELTA,start=1) summary(DELTA.mcmc) ``` ``` ## ## Iterations = 1:12000 ## Thinning interval = 1 ## Number of chains = 1 ## Sample size per chain = 12000 ## ## 1. Empirical mean and standard deviation for each variable, ## plus standard error of the mean: ## ## Mean SD Naive SE Time-series SE ## 0.127657 0.119522 0.001091 0.001091 ## ## 2. Quantiles for each variable: ## ## 2.5% 25% 50% 75% 97.5% ## -0.10691 0.04791 0.12743 0.20796 0.36407 ``` ```r summary((2*DELTA)) #rescale as difference in group means ``` ``` ## Min. 1st Qu. Median Mean 3rd Qu. Max. ## -0.63464 0.09582 0.25487 0.25531 0.41592 1.23660 ``` ```r mean(y_male) - mean(y_female) #compare to data ``` ``` ## [1] 0.2553392 ``` --- ## Posterior summaries ```r SIGMA2.mcmc <- mcmc(SIGMA2,start=1) summary(SIGMA2.mcmc) ``` ``` ## ## Iterations = 1:12000 ## Thinning interval = 1 ## Number of chains = 1 ## Sample size per chain = 12000 ## ## 1. Empirical mean and standard deviation for each variable, ## plus standard error of the mean: ## ## Mean SD Naive SE Time-series SE ## 2.287927 0.257689 0.002352 0.002352 ## ## 2. Quantiles for each variable: ## ## 2.5% 25% 50% 75% 97.5% ## 1.833 2.107 2.272 2.455 2.841 ``` --- ## Diagnostics ```r plot(MU.mcmc) ``` <img src="5-2-hierarchical-models-two-groups-II_files/figure-html/unnamed-chunk-9-1.png" style="display: block; margin: auto;" /> --- ## Diagnostics ```r autocorr.plot(MU.mcmc) ``` <img src="5-2-hierarchical-models-two-groups-II_files/figure-html/unnamed-chunk-10-1.png" style="display: block; margin: auto;" /> --- ## Diagnostics ```r plot(DELTA.mcmc) ``` <img src="5-2-hierarchical-models-two-groups-II_files/figure-html/unnamed-chunk-11-1.png" style="display: block; margin: auto;" /> --- ## Diagnostics ```r autocorr.plot(DELTA.mcmc) ``` <img src="5-2-hierarchical-models-two-groups-II_files/figure-html/unnamed-chunk-12-1.png" style="display: block; margin: auto;" /> --- ## Diagnostics ```r plot(SIGMA2.mcmc) ``` <img src="5-2-hierarchical-models-two-groups-II_files/figure-html/unnamed-chunk-13-1.png" style="display: block; margin: auto;" /> --- ## Diagnostics ```r autocorr.plot(SIGMA2.mcmc) ``` <img src="5-2-hierarchical-models-two-groups-II_files/figure-html/unnamed-chunk-14-1.png" style="display: block; margin: auto;" /> --- ## Application to data - Posterior probability that boys have larger average BMI than girls is 0.86! - Posterior medians and 95% credible intervals for the group means are actually quite similar to the unpooled gender specific intervals from classical inference (do a t-test to confirm). ```r #mean for boys quantile((MU+DELTA),probs=c(0.025,0.5,0.975)) ``` ``` ## 2.5% 50% 97.5% ## 14.50255 14.84146 15.17925 ``` ```r #mean for girls quantile((MU-DELTA),probs=c(0.025,0.5,0.975)) ``` ``` ## 2.5% 50% 97.5% ## 14.26848 14.58276 14.90761 ``` ```r #posterior probability girls have larger BMI than boys mean(DELTA > 0) ``` ``` ## [1] 0.8571667 ``` --- ## Application to data - Let's look at a different sub-population. For older individuals `\(> 75\)`, we only have 8 male and 4 female. ```r y_male <- bmi[Howell1$age > 75 & Howell1$male==1] y_female <- bmi[Howell1$age > 75 & Howell1$male==0] n_m <- length(y_male) n_f <- length(y_female) n_m ``` ``` ## [1] 8 ``` ```r n_f ``` ``` ## [1] 4 ``` --- ## Application to data - A 95% confidence interval for the difference between genders in BMI (estimated as 0.24) is (-4.20,4.68). ```r mean(y_male) - mean(y_female) ``` ``` ## [1] 0.2408966 ``` ```r t.test(y_male,y_female) ``` ``` ## ## Welch Two Sample t-test ## ## data: y_male and y_female ## t = 0.13801, df = 5.1869, p-value = 0.8954 ## alternative hypothesis: true difference in means is not equal to 0 ## 95 percent confidence interval: ## -4.197948 4.679741 ## sample estimates: ## mean of x mean of y ## 18.06751 17.82662 ``` --- ## Application to data - Let's apply the Bayesian model with these priors: + `\(\mu_0 = 18, \gamma_0 = 5\)`, + `\(\delta_0 = 0, \tau_0 = 3\)`, + `\(\nu_0 = 1, \sigma_0 = 5\)`. -- - The R code for running the sampler is suppressed here. Basically, just re-run the same Gibbs sampler from before on this new data. -- - Using the results from the model, the posterior mean is 0.25 with 95% CI (-3.45, 3.88). ```r mean((DELTA*2)) ``` ``` ## [1] 0.2493733 ``` ```r quantile((DELTA*2),probs=c(0.025,0.5,0.975)) ``` ``` ## 2.5% 50% 97.5% ## -3.4466931 0.2758598 3.8762543 ``` --- ## Application to data - The width of this interval is smaller than that of the 95% confidence interval from before. -- - In a way, precision has been improved by borrowing of information across the groups. Of course the prior is important here given the sample sizes. --- class: center, middle # What's next? ### Move on to the readings for the next module!