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COMPARING MULTIPLE GROUPS

Suppose we wish to investigate the mean (and distribution) of test scores
for students at  different high schools.

In each school , where , suppose we test a random sample

of  students.

Let  be the test score for the th student in school , with ,

with

where for each school ,  is the school-wide average test score, and 

is the school-wide variance of individual test scores.

This is what we did for the the Pygmalion study and job training data.
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SCHOOL TESTING EXAMPLE

Option I: Classical inference for each school can be based on large

sample 95% CI: , where  is the sample average in

school , and  is the sample variance in school .

Clearly, we can overfit the data within schools, for example, what if we
only have 4 students from one of the schools?  can be a good estimate

if  is large but it may be poor if  is small.

Option II: alternatively, we might believe that  for all ; that is, all

schools have the same mean. This is the assumption (null hypothesis) in
ANOVA models for example. We can also set  for all .

Option I ignores that the 's should be reasonably similar, whereas

option II ignores any differences between them.

It would be nice to find a compromise! Borrowing information across,
and shrinking our estimate towards a grand mean could be very useful
here.
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SCHOOL TESTING EXAMPLE

For the Pygmalion study and job training data, we focused on using
priors that are independent between the groups.

For example, in the conjugate case, we would have

for some hyperparameters (constants), , , , and .

In the semi-conjugate case,

for some hyperparameters (constants), , , , and .
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HIERARCHICAL NORMAL MODEL

Instead, we can assume that the 's are drawn from a distribution based

on the following: conceive of the schools themselves as being a random
sample from all possible schools.

For now, assume the variance is constant across schools. The hierarchical
normal model assumes normal sampling models both within and between
groups:

which gives us an extra level in the prior on the means, and leads to
sharing of information across the groups in estimating the group-specific
means.

We have an extra variance parameter . Comparing  to  tells us
how much of the variation in  is due to within-group versus between-
group variation.

θj

yij|θj, σ2 ∼ N (θj, σ2) ;    i = 1, … , nj

θj|μ, τ 2 ∼ N (μ, τ 2) ;    j = 1, … , J,
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HIERARCHICAL NORMAL MODEL

Standard semi-conjugate priors are given by

with

: best guess of average of school averages

: set based on plausible ranges of values of 

: best guess of variance of school averages

: set based on how tight prior for  is around 

: best guess of variance of individual test scores around respective

school means

: set based on how tight prior for  is around .

π(μ) = N (μ0, γ2
0)

π(σ2) = IG( , )

π(τ 2) = IG( , ) .
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EXCHANGEABILITY

This model relies heavily on exchangeability across units at each level.

For example, we assume the schools are a random sample from the
population of all schools, and the students within schools are a random
sample of all the students in each school.

This is not always completely true.

Note: we can allow the variance to vary across schools if desired (and
we will soon in fact).
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EXCHANGEABILITY

Turns out that conditional exchangeability would be enough if we
control for relevant variables in our modeling.

For example, the schools in Chapel Hill/Carrboro are not entirely
exchangeable.

For example, Phoenix Academy is for students on long-term out-of-school
suspension or who need to make up work due to extended absences
(e.g., pregnancy), and Memorial Hospital School is for children battling
serious illnesses.

However, if we condition on school type (public, charter, private, special
services, home), the schools may then be exchangeable.
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POSTERIOR INFERENCE

Recall the model is

Under our prior specification, we can factor the posterior as follows:

yij|θj, σ2 ∼ N (θj, σ2) ;    i = 1, … , nj

θj|μ, τ 2 ∼ N (μ, τ 2) ;    j = 1, … , J,

π(θ1, … , θJ , μ, σ2, τ 2|Y ) ∝ p(y|θ1, … , θJ , μ, σ2, τ 2)

     × p(θ1, … , θJ |μ, σ2, τ 2)

     × π(μ, σ2, τ 2)

= p(y|θ1, … , θJ , σ2)

     × p(θ1, … , θJ |μ, τ 2)

     × π(μ) ⋅ π(σ2) ⋅ π(τ 2)

= {
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p(θj|μ, τ 2)}

     × π(μ) ⋅ π(σ2) ⋅ π(τ 2)
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FULL CONDITIONAL FOR GRAND MEAN

The full conditional distribution of  is proportional to the part of the joint

posterior  that involves .

That is,

This looks like the full conditional distribution from the one-sample normal
case, so you can show that

and .
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FULL CONDITIONALS FOR GROUP MEANS

Similarly, the full conditional distribution of each  is proportional to the

part of the joint posterior  that involves .

That is,

Those terms include a normal for  multiplied by a product of normals in

which  is the mean, again mirroring the one-sample case, so you can

show that
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FULL CONDITIONALS FOR GROUP MEANS

Our estimate for each  is a weighted average of  and , ensuring

that we are borrowing information across all levels through  and .

The weights for the weighted average is determined by relative
precisions from the data and from the second level model.

The groups with smaller  have estimated  closer to  than schools

with larger .

Thus, degree of shrinkage of  depends on ratio of within-group to

between-group variances.
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FULL CONDITIONALS FOR ACROSS-GROUP

VARIANCE

The full conditional distribution of  is proportional to the part of the
joint posterior  that involves .

That is,

As in the case for , this looks like the one-sample normal problem, and

our full conditional posterior is

τ 2
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FULL CONDITIONALS FOR WITHIN-GROUP

VARIANCE

Finally, the full conditional distribution of  is proportional to the part of
the joint posterior  that involves .

That is,

We can again take advantage of the one-sample normal problem, so
that our full conditional posterior is

σ2
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WHAT'S NEXT?

MOVE ON TO THE READINGS FOR THE NEXT MODULE!
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