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MOTIVATING EXAMPLE
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Let's consider the problem of predicting swimming times for high school
swimmers to swim 50 yards.

We have data collected on four students, each with six times taken
(every two weeks).

Suppose the coach of the team wants to use the data to recommend one
of the swimmers to compete in a swim meet in two weeks time.

Since we want to predict swimming times given week, one option would
be regression models.

In a typical regression setup, we store the predictor variables in a matrix
Xyxp, s0 1 is the number of observations and p is the number of
variables.

You should all know how to write down and fit linear regression models
of the most common forms, so let's only review the most important
details.
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NORMAL REGRESSION MODEL
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= The model assumes the following distribution for a response variable Y;

given multiple covariates/predictors x; = (1, zs1, T2, . . ., Tip-1))-
iid
Yi = Bo+ Biza + Pazia + ... + Bp1Tipor) + €5 €& ~ N(O, a?).
or in vector form for the parameters,
iid

Y, =BTz +e; € ~N(0,%),

where ,3 = (ﬁo,ﬁl,ﬂ2, .. ,Bp—l)-

= We can also write the model as:

Y; %IN(IBTwza 0-2);

p(yile:) = N(B i, 0°).

= That is, the model assumes E[Y |x] is linear.
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LIKELIHOOD

1id

= Given that we have Y; ~ N(8%z;, %), the likelihood is

p(yu oo 7yn‘w17 coog wnvﬂa 02) = Hp(yi‘wiaﬂ70-2)
=1

IR R G I R
_gmep{ 307 ﬂ""’)}
x (%)% exp{ Ly ﬂTm,-V} .

T 9.2
20 P

= From all our work with normal models, we already know it would be
convenient to specify a (multivariate) normal prior on 8 and a gamma
prior on 1/02, so let's start there.

= Two things to immediately notice:

» since B is a vector, it might actually be better to rewrite this kernel in
multivariate form altogether, and

= when combining this likelihood with the prior kernel, we will need to

find a way to detach 3 from x;.
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MULTIVARIATE FORM

= Let
(Y7 [l oz oz . Typon) ] g? €1 ] 1 0 ... 07
Y, 1 x97 x99 ... Zo(p—1) €9 O 1 ... 0
Y = X = B = B2 € = I=|. .
_Yn_ _1 Tnl Lp2 ... xn(pfl)_ ,B ) | €n | _0 0 1_
| ~Fp—1 ]

= Then, we can write the model as

Y =XB+e€ e€~N,(0,6%1,.,).

= That is, in multivariate form, we have

Y ~ No(XB,0%I,x7).
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FREQUENTIST ESTIMATION RECAP

= OLS estimate of 3 is given by
Bas = (X7X) 'X"y.
» Predictions can then be written as
§=XBy = X |(XTX) ' XTy| = | X(X7X) 'X"| .
» The variance of the OLS estimates of all p coefficients is

Var [Bols] = g2 (XTX)_l.

= Finally,

§2 — (y o Xﬂols)T(y o XIBols)
e — n—p .
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BAYESIAN SPECIFICATION

The likelihood for the regression model becomes

pIX. 8,07 o () * exp { —5 (v — XB)' (v~ XB) |

x (02)_% exp {—% [yTy — 28T X Ty + ,BTXTX,B] } .

We can start with the following semi-conjugate prior for 3:

7(8) = Np(po, Xo)-

That is, the pdfis

w(8) = (2r) 415l F exp {5 (8- uo)"%; (8 - o) |

Recall from our multivariate normal model that we can write this pdf as

m(B) o exp {— %BTxalﬂ + ﬂTzlgluo} :
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MULTIVARIATE NORMAL MODEL RECAP

= To avoid doing all work from scratch, we can leverage results from the
multivariate normal model.

= In particular, recall that if Y ~ N,(6,X),
1
p(y|0,Y) x exp {—EOT(Z_l)O + BT(E_l'g)}
and
1 T A —1 T A —1
7(0) x exp —50 Ay 0+ 0" A g
= Then
1
(0|32, y) x exp {—EOT [Aal +27'6+6" [Aalﬂg + 27 1y] } = No(pn, Ar)

where

A=A +271] 7

ST 360/602L ' pn =Ny [Ay o + 271y
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POSTERIOR COMPUTATION

= For inference on 3, rewrite the likelihood as

pIX. 8,07 ox (6°) % exp { - [Ty - 267 X7y + 7 X" XB]
X exp {—% [,BTXTX,B — 2,3TXTy] }

X exp {—lﬂT <iXTX> B+ BT <iXTy) } :
2 o2 o?
= Again, with the prior written as
1
m(B) o exp {— 5B B+ ﬂTEgluo} :

both forms look like what we have on the previous page. It is then easy
to read off the full conditional for 3.
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POSTERIOR COMPUTATION

= That is,
(Bly, X, 0%) < p(y| X, B,0%) - n(B)
x exp {—lﬂT [2—1 + iXTX] B+ BT [2—1 + iXT } }
2 0 o2 o Mo 54 Y
= Np(bn, 3n).-
= Comparing this to the prior
1
m(B) ox exp {—EﬂTEEIﬂ + ﬂTE(Iluo} ,
means
1 =1
Sy, = [251 + —2XTX}

(o)

= »l iXT

! 10/ 13



POSTERIOR COMPUTATION

= Next, we move to 2. From previous work, we already know the inverse-
gamma distribution with be semi-conjugate.

b
= First, recall that ZG(y; a,b) = b—y_(“+1)e S
['(a)

vy U0
= So, if we set m(c?) = IG 55 | we have

m(o’ly, X, B) x p(y| X, B,5°) - w(c?)

x (62)} exp { (i) (y - Xﬂ)Z(y— XB) }

0-2
o ]

x (02)<%+1>e(%> ’
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POSTERIOR COMPUTATION

= That is,

1 ) (y— XB) (y— XB) }
2

y0+n+1)e_<i) [voa%ﬂy—);ﬂ)ff(y—xml

where

U, =Vy+n; o02= VL [Vgag +(y— XB) T (y — X,B)} = VL [Vgag -+ SSR(,B)] .

n

= (y — XB)T(y — XPB) is the sum of squares of the residuals (SSR).
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WHAT'S NEXT®

MOVE ON TO THE READINGS FOR THE NEXT MODULE!
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