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BAYESIAN LINEAR REGRESSION RECAP

Sampling model:

Semi-conjugate prior for :

Semi-conjugate prior for :

Y ∼ Nn(Xβ, σ
2In×n).
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FULL CONDITIONAL

where

and

where

π(β|y, X, σ2) =  Np(μn, Σn),

Σn = [Σ−1
0 + XT X]
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WEAKLY INFORMATIVE PRIORS

Specifying hyperparameters that represent actual prior information can
be challenging, especially for .

It can therefore be desirable use weakly informative priors when
possible. The Hoff book discusses a few different options, one of which is
the Zellner's g-prior (there are other options but we will not cover them in
this course).

Note that we can also use Jefferys prior here to be completely non-
informative.

Zellner's g-prior is

for some positive value , which is often commonly set to the sample size 

.
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WEAKLY INFORMATIVE PRIORS

Note that the g-prior uses a part of the data. As I have mentioned
before, using your data to construct your prior is usually a no-no.

However, the g-prior actually does not use the information in , the

response variable of interest, just the information in .

Observe that the prior specification actually looks like the conjugate
prior we first used for the univariate normal model, that is, with

Turns out that we also have conjugacy with the g-prior, so that we don't
actually need Gibbs sampling to obtain posterior samples. 

takes the same form as before but now we also have .
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WEAKLY INFORMATIVE PRIORS

With the g-prior, we have

where

where . See the Hoff book for

the proof, and see homework for illustration.

π(β|y, X, σ2) = Np(μn, Σn)

π(σ2|y, X) = IG( , )
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EXAMPLE

Health plans use many tools to try to control the cost of prescription
medicines.

For older drugs, generic substitutes that are the equivalent to name-brand
drugs are available at considerable savings.

Another tool that may lower costs is restricting drugs that the physician
may prescribe.

For example if three similar drugs for treating the same condition are
available, a health plan may require the physician to prescribe only one
of them, allowing the plan to negotiate discounts based on a higher
volume of sales.

We have data from 29 health plans can be used to explore the
effectiveness of these two strategies in controlling drug costs.

The response is COST, the average cost of the prescriptions to the plan
per day (in dollars).
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EXAMPLE

Explanatory variables are:

RXPM: Average number of prescriptions per member per year

GS: Percent generic substitute used by the plan

RI: Restrictiveness Index, from 0 (no restrictions) to 100 (total
restrictions on the physician)

COPAY: Average member copay on prescriptions

AGE: Average member age

F: percent female members

MM: Member months, a measure of the size of the plan

ID: an identifier for the name of the plan

The data is in the file costs.txt on Sakai.

For this illustration, we will restrict ourselves to GS and AGE. We will use
the other variables later.
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DATA

#require(lattice)
#library(pls)
#library(calibrate)
#library(mvtnorm)

###### Data
Data <- read.table("data/costs.txt",header=TRUE)[,-9]
head(Data)

##   COST RXPM GS   RI COPAY  AGE    F      MM
## 1 1.34  4.2 36 45.6 10.87 29.7 52.3 1158096
## 2 1.34  5.4 37 45.6  8.66 29.7 52.3 1049892
## 3 1.38  7.0 37 45.6  8.12 29.7 52.3   96168
## 4 1.22  7.1 40 23.6  5.89 28.7 53.4  407268
## 5 1.08  3.5 40 23.6  6.05 28.7 53.4   13224
## 6 1.16  7.2 46 22.3  5.05 29.1 52.2  303312
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VERY BASIC EDA
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VERY BASIC EDA
levelplot(cor(Data[,c("COST","GS","AGE")])) #Check correlation
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VERY BASIC EDA
Without outlier:
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VERY BASIC EDA
Without outlier:

levelplot(cor(Data[-19,c("COST","GS","AGE")])) #Check correlation
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POSTERIOR COMPUTATION

###### g-Prior: with g=n using full model
# Data summaries
X <- cbind(1,as.matrix(Data[-19,c("GS","AGE")])) #remove potential outlier
Y <- matrix(Data$COST[-19],ncol=1)
n <- length(Y)
p <- ncol(X)
g <- n

# OLS estimates
beta_ols <- solve(t(X)%*%X)%*%t(X)%*%Y
round(t(beta_ols),4)

##                GS     AGE
## [1,] 2.7047 -0.02 -0.0231

SSR_beta_ols <- (t(Y - (X%*%beta_ols)))%*%(Y - (X%*%beta_ols))
sigma_ols <- SSR_beta_ols/(n-p)
sigma_ols

##             [,1]
## [1,] 0.005247074

# Hyperparameters for the priors
#sigma_0_sq <- sigma_ols
sigma_0_sq <- 1/100
nu_0 <- 1

# Set number of iterations
S <- 10000
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POSTERIOR COMPUTATION

set.seed(1234)

# Sample sigma_sq
nu_n <- nu_0 + n
Hg <- (g/(g+1))* X%*%solve(t(X)%*%X)%*%t(X)
SSRg <- t(Y)%*%(diag(1,nrow=n) - Hg)%*%Y
nu_n_sigma_n_sq <- nu_0*sigma_0_sq + SSRg
sigma_sq <- 1/rgamma(S,(nu_n/2),(nu_n_sigma_n_sq/2))

# Sample beta
mu_n <- g*beta_ols/(g+1)
beta <- matrix(nrow=S,ncol=p)
for(s in 1:S){
  Sigma_n <- g*sigma_sq[s]*solve(t(X)%*%X)/(g+1)
  beta[s,] <- rmvnorm(1,mu_n,Sigma_n)
}

#posterior summaries
colnames(beta) <- colnames(X)
mean_beta <- apply(beta,2,mean)
round(mean_beta,4)

##              GS     AGE 
##  2.6057 -0.0193 -0.0221

round(apply(beta,2,function(x) quantile(x,c(0.025,0.975))),4)

##                   GS     AGE
## 2.5%  0.4392 -0.0432 -0.0935
## 97.5% 4.7903  0.0044  0.0460
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WHAT'S NEXT?

MOVE ON TO THE READINGS FOR THE NEXT MODULE!
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