STA 360/602L: MODULE 6.5

BAYESIAN MODEL SELECTION

DR. OLANREWAJU MICHAEL AKANDE

BAYESIAN MODEL SELECTION

- Now that we have a general sense of how Bayesian hypothesis works, \blacksquare let's get into model selection, and use some of the same ideas.
- General setting:
	- 1. Define a list of models. That is, let Γ be a "finite" set of different possible models.
	- 2. Each model γ is in Γ , including the "true" model. Also, let θ_γ represent the parameters in model $\gamma.$
	- 3. Put a prior over the set Γ . Let $\Pi_\gamma = p[\gamma] = \Pr[\gamma \text{ is true}]$, for all $\gamma \in \Gamma.$

Most common choice is the uniform prior, that is, $\Pi_{\gamma} = \frac{1}{\# \Gamma}$, for all $\gamma\in\Gamma$, where $\#\Gamma$ is the total number of models in $\Gamma.$ \overline{H}

- 4. Put a prior on the parameters in each model, that is, each $\pi(\theta_\gamma).$
- 5. Compute marginal posterior probabilities $\Pr[\gamma|Y]$ for each model, and select a model based on the posterior probabilities

BAYESIAN MODEL SELECTION

- For each model $\gamma\in\Gamma$, we need to compute $\Pr[\gamma|Y].$
- Let $p_\gamma(Y)$ denote the marginal likelihood of the data under model γ , that is, $p[Y|\gamma]$. As before,

$$
\begin{aligned} \hat{\Pi}_\gamma &= \Pr[\gamma|Y] = \frac{p[Y|\gamma]\cdot p[\gamma]}{\sum_{\gamma^\star\in\Gamma} p[Y|\gamma^\star]\cdot p[\gamma^\star]} = \frac{p_\gamma(Y)\Pi_\gamma}{\sum_{\gamma^\star\in\Gamma} p_{\gamma^\star}(Y)\Pi_{\gamma^\star}} \\ &= \frac{\Pi_\gamma\cdot\left[\int_{\Theta_\gamma} p_\gamma(Y|\theta_\gamma)\cdot \pi(\theta_\gamma)\mathrm{d}\theta_\gamma\right]}{\sum_{\gamma^\star\in\Gamma} \Pi_{\gamma^\star}\cdot\left[\int_{\Theta_{\gamma^\star}} p_{\gamma^\star}(Y|\theta_{\gamma^\star})\cdot \pi(\theta_{\gamma^\star})\mathrm{d}\theta_{\gamma^\star}\right]}.\end{aligned}
$$

If we assume a uniform prior on Γ , that is, $\Pi_{\gamma} = \frac{1}{\# \Gamma}$, for all $\gamma \in \Gamma$, then $\frac{1}{\#\Gamma}$, for all $\gamma\in\Gamma$,

$$
\begin{aligned} \hat{\Pi}_\gamma &= \frac{p_\gamma(Y)}{\sum_{\gamma^\star \in \Gamma} p_{\gamma^\star}(Y)} \\ &= \frac{\left[\int_{\Theta_\gamma} p_\gamma(Y|\theta_\gamma) \cdot \pi(\theta_\gamma) \mathrm{d} \theta_\gamma \right]}{\sum_{\gamma^\star \in \Gamma} \left[\int_{\Theta_{\gamma^\star}} p_{\gamma^\star}(Y|\theta_{\gamma^\star}) \cdot \pi(\theta_{\gamma^\star}) \mathrm{d} \theta_{\gamma^\star} \right]} . \end{aligned}
$$

BAYESIAN MODEL SELECTION

- How should we choose the Bayes optimal model? \blacksquare
- We can specify a loss function. The most natural is

 $L(\hat{\gamma}, \gamma) = \mathbf{1}(\hat{\gamma} \neq \gamma),$

that is,

- 1. Loss equals zero if the correct model is chosen; and
- 2. Loss equals one if incorrect model is chosen.
- Next, select $\hat{\gamma}$ to minimize Bayes risk. Here, Bayes risk (expected loss \blacksquare over posterior) is

$$
R(\hat{\gamma}) = \sum_{\gamma \in \Gamma} \mathbf{1}(\hat{\gamma} \neq \gamma) \cdot \hat{\Pi}_{\gamma} = 0 \cdot \hat{\Pi}_{\gamma_{\text{true}}} + \sum_{\gamma \neq \gamma_{\text{true}}} \hat{\Pi}_{\gamma} = \sum_{\gamma \neq \hat{\gamma}} \hat{\Pi}_{\gamma} = 1 - \hat{\Pi}_{\hat{\gamma}}
$$

To minimize $R(\hat{\gamma})$, choose $\hat{\gamma}$ such that $\hat{\Pi}_{\hat{\gamma}}$ is the largest! That is, select the model with the largest posterior probability.

INFERENCE VS PREDICTION

- What if the goal is prediction? Then maybe we should care more about predictive accuracy, rather than selecting specific variables.
- For predictions, we care about the posterior predictive distribution, that is

$$
\begin{aligned} p(y_{n+1}|Y=(y_1,\ldots,y_n))&=\int_\Gamma\int_{\Theta_\gamma}p(y_{n+1}|\gamma,\theta_\gamma)\cdot\pi(\gamma,\theta_\gamma|Y)\;\mathrm{d}\theta_\gamma\mathrm{d}\gamma\\ &=\int_\Gamma\int_{\Theta_\gamma}p(y_{n+1}|\gamma,\theta_\gamma)\cdot\pi(\theta_\gamma|Y,\gamma)\cdot\Pr[\gamma|Y]\;\mathrm{d}\theta_\gamma\mathrm{d}\gamma\\ &=\sum_{\gamma\in\Gamma}\int_{\Theta_\gamma}p(y_{n+1}|\gamma,\theta_\gamma)\cdot\pi(\theta_\gamma|Y,\gamma)\cdot\hat{\Pi}_\gamma\;\mathrm{d}\theta_\gamma\\ &=\sum_{\gamma\in\Gamma}\hat{\Pi}_\gamma\cdot\int_{\Theta_\gamma}p(y_{n+1}|\gamma,\theta_\gamma)\cdot\pi(\theta_\gamma|Y,\gamma)\;\mathrm{d}\theta_\gamma\\ &=\sum_{\gamma\in\Gamma}\hat{\Pi}_\gamma\cdot p(y_{n+1}|Y,\gamma), \end{aligned}
$$

which is just averaging out the predictions from each model, over all possible models in Γ , with the posterior probability of each model, and this is known as Bayesian model averaging (BMA).

BACK TO BAYESIAN LINEAR REGRESSION

- So what does this mean specifically in the context of linear regression?
- First, recall that for model γ , the posterior probability that the model is \blacksquare the right model is

$$
\hat{\Pi}_\gamma = \frac{\Pi_\gamma p_\gamma(Y)}{\sum_{\gamma^\star \in \Gamma} \Pi_{\gamma^\star} p_{\gamma^\star}(Y)}.
$$

- \blacksquare Practical issues
	- We need to calculate marainal likelihoods for ALL models in Γ .
	- **IF In general for, we cannot calculate the marginal likelihoods unless** we have a proper or conjugate priors.
	- For linear regression, that would mean looking to priors like Zellner's g-prior, the horseshoe prior you were introduced to in the lab, and so on.

To explore Bayesian variable selection, rewrite each model $\gamma\in\Gamma$ as

 $\boldsymbol{Y}\sim \mathcal{N}_n(\boldsymbol{X}_{\gamma}\boldsymbol{\beta}_{\gamma},\sigma^2\boldsymbol{I}_{n\times n}).$

- γ represents the set of predictors we want to throw into our model.
- Using the notation as before, each $\gamma = (\gamma_0, \gamma_1, \ldots, \gamma_{p-1}) \in \{0,1\}^p$, so that the cardinality of Γ is 2^p , that is, the number of models in $\Gamma.$
- \blacksquare That is,
	- $\gamma_j=1$ means the j 'th predictor is included in the model, but $\gamma_j=0$ means it is not;
	- \boldsymbol{X}_γ is the matrix of predictors with $\gamma_j=1$;
	- $\boldsymbol{\beta}_{\gamma}$ is the corresponding vector of predictors with $\gamma_j=1.$
- Set $p_\gamma = \sum_{j=1}^p \gamma_j$, so that p_γ is the number of predictors included in model γ , then \bm{X}_{γ} is $n\times p_{\gamma}$ and $\bm{\beta}_{\gamma}$ is $p_{\gamma}\times 1.$

Recall that we can also write each model as

 $Y_i = \boldsymbol{\beta}^T_{\gamma} \boldsymbol{x}_{i\gamma} + \epsilon_i; \quad \epsilon_i \stackrel{iid}{\sim} \mathcal{N}(0,\sigma^2).$

- As an example, suppose we had data with 6 potential predictors including the intercept, so that each $\boldsymbol{x}_i = (1, x_{i1}, x_{i2}, x_{i3}, x_{i4}, x_{i5})$, and $\boldsymbol{\beta} = (\beta_0, \beta_1, \beta_2, \beta_3, \beta_4, \beta_5).$
- Then for model with $\gamma=(1,1,0,0,0,0)$, $Y_i=\bm{\beta}_\gamma^T\bm{x}_{i\gamma}+\epsilon_i$

$$
\implies Y_i = \beta_0 + \beta_1 x_{i1} + \epsilon_i; \quad \epsilon_i \stackrel{iid}{\sim} \mathcal{N}(0, \sigma^2),
$$

with $p_{\gamma} = 2$.

Whereas for model with $\gamma=(1,0,0,1,1,0)$, $Y_i=\bm{\beta}_\gamma^T\bm{x}_{i\gamma}+\epsilon_i$

$$
\implies Y_i = \beta_0 + \beta_3x_{i3} + \beta_4x_{i4} + \epsilon_i; \quad \epsilon_i \stackrel{iid}{\sim} \mathcal{N}(0, \sigma^2),
$$

with $p_{\gamma} = 3$.

- The outline for variable selection would be as follows:
	- 1. Write down likelihood under model γ . That is,

$$
p(\boldsymbol{y}|\boldsymbol{X}, \gamma, \boldsymbol{\beta}_{\gamma}, \sigma^2) \propto (\sigma^2)^{-\frac{n}{2}} \exp\left\{-\frac{1}{2\sigma^2}(\boldsymbol{y}-\boldsymbol{X}_{\gamma}\boldsymbol{\beta}_{\gamma})^T(\boldsymbol{y}-\boldsymbol{X}_{\gamma}\boldsymbol{\beta}_{\gamma})\right\}
$$

- 2. Define a prior for γ , $\Pi_{\gamma} = \Pr[\gamma].$ For example, (i) uniform over all 2^p possible models, or even (ii) beta prior (since each $\gamma_j \in \{0,1\}$).
- 3. Put a prior on the parameters in each model. Using the g-prior, we have

$$
\pi(\boldsymbol{\beta}_{\gamma}|\sigma^2)=\mathcal{N}_p\left(\boldsymbol{\beta}_{0\gamma}=\boldsymbol{0},\Sigma_{0\gamma}=g\sigma^2\big[\boldsymbol{X}^T_{\gamma}\boldsymbol{X}_{\gamma}\big]^{-1}\right)\\ \pi(\sigma^2)=\mathcal{IG}\left(\frac{\nu_0}{2},\frac{\nu_0\sigma_0^2}{2}\right)
$$

- With those pieces, the conditional posteriors are straightforward.
- We can then compute marginal posterior probabilities $\Pr[\gamma|Y]$ for each model and select model with the highest posterior probability.
- We can also compute posterior $\Pr[\gamma_j = 1 | Y]$, the posterior probability of including the j 'the predictor, often called marginal inclusion probability (MIP), allowing for uncertainty in the other predictors.
- Also straightforward to do model averaging once we all have posterior samples.
- The Hoff book works through one example and you can find the Gibbs sampler for doing inference there. I strongly recommend you go through it carefully!
- \blacksquare In this course however, we will focus on using R packages for doing the same.

WHAT'S NEXT?

MOVE ON TO THE READINGS FOR THE NEXT MODULE!

