# STA 360/602L: Module 6.5

BAYESIAN MODEL SELECTION

DR. OLANREWAJU MICHAEL AKANDE



#### BAYESIAN MODEL SELECTION

Now that we have a general sense of how Bayesian hypothesis works, let's get into model selection, and use some of the same ideas.

#### General setting:

- 1. Define a list of models. That is, let  $\Gamma$  be a "finite" set of different possible models.
- 2. Each model  $\gamma$  is in  $\Gamma$ , including the "true" model. Also, let  $\theta_{\gamma}$  represent the parameters in model  $\gamma$ .
- 3. Put a prior over the set  $\Gamma$ . Let  $\Pi_{\gamma}=p[\gamma]=\Pr[\gamma ext{ is true}]$ , for all  $\gamma\in\Gamma$ .

Most common choice is the uniform prior, that is,  $\Pi_{\gamma}=\frac{1}{\#\Gamma}$ , for all  $\gamma\in\Gamma$ , where  $\#\Gamma$  is the total number of models in  $\Gamma$ .

- 4. Put a prior on the parameters in each model, that is, each  $\pi(\theta_{\gamma})$ .
- 5. Compute marginal posterior probabilities  $\Pr[\gamma|Y]$  for each model, and select a model based on the posterior probabilities

### BAYESIAN MODEL SELECTION

- lacksquare For each model  $\gamma\in\Gamma$ , we need to compute  $\Pr[\gamma|Y].$
- Let  $p_{\gamma}(Y)$  denote the marginal likelihood of the data under model  $\gamma$ , that is,  $p[Y|\gamma]$ . As before,

$$egin{aligned} \hat{\Pi}_{\gamma} &= \Pr[\gamma|Y] = rac{p[Y|\gamma] \cdot p[\gamma]}{\sum_{\gamma^{\star} \in \Gamma} p[Y|\gamma^{\star}] \cdot p[\gamma^{\star}]} = rac{p_{\gamma}(Y)\Pi_{\gamma}}{\sum_{\gamma^{\star} \in \Gamma} p_{\gamma^{\star}}(Y)\Pi_{\gamma^{\star}}} \ &= rac{\Pi_{\gamma} \cdot \left[\int_{\Theta_{\gamma}} p_{\gamma}(Y| heta_{\gamma}) \cdot \pi( heta_{\gamma}) \mathrm{d} heta_{\gamma}
ight]}{\sum_{\gamma^{\star} \in \Gamma} \Pi_{\gamma^{\star}} \cdot \left[\int_{\Theta_{\gamma^{\star}}} p_{\gamma^{\star}}(Y| heta_{\gamma^{\star}}) \cdot \pi( heta_{\gamma^{\star}}) \mathrm{d} heta_{\gamma^{\star}}
ight]}. \end{aligned}$$

lacksquare If we assume a uniform prior on  $\Gamma$ , that is,  $\Pi_{\gamma}=rac{1}{\#\Gamma}$ , for all  $\gamma\in\Gamma$ , then

$$egin{aligned} \hat{\Pi}_{\gamma} &= rac{p_{\gamma}(Y)}{\sum_{\gamma^{\star} \in \Gamma} p_{\gamma^{\star}}(Y)} \ &= rac{\left[\int_{\Theta_{\gamma}} p_{\gamma}(Y| heta_{\gamma}) \cdot \pi( heta_{\gamma}) \mathrm{d} heta_{\gamma}
ight]}{\sum_{\gamma^{\star} \in \Gamma} \left[\int_{\Theta_{\gamma^{\star}}} p_{\gamma^{\star}}(Y| heta_{\gamma^{\star}}) \cdot \pi( heta_{\gamma^{\star}}) \mathrm{d} heta_{\gamma^{\star}}
ight]}. \end{aligned}$$

#### BAYESIAN MODEL SELECTION

- How should we choose the Bayes optimal model?
- We can specify a loss function. The most natural is

$$L(\hat{\gamma}, \gamma) = \mathbf{1}(\hat{\gamma} \neq \gamma),$$

that is,

- 1. Loss equals zero if the correct model is chosen; and
- 2. Loss equals one if incorrect model is chosen.
- Next, select  $\hat{\gamma}$  to minimize Bayes risk. Here, Bayes risk (expected loss over posterior) is

$$R(\hat{\gamma}) = \sum_{\gamma \in \Gamma} \mathbf{1}(\hat{oldsymbol{\gamma}} 
eq oldsymbol{\gamma}) \cdot \hat{\Pi}_{\gamma} = 0 \cdot \hat{\Pi}_{\gamma_{ ext{true}}} + \sum_{\gamma 
eq \gamma_{ ext{true}}} \hat{\Pi}_{\gamma} = \sum_{\gamma 
eq \hat{\gamma}} \hat{\Pi}_{\gamma} = 1 - \hat{\Pi}_{\hat{\gamma}}$$

■ To minimize  $R(\hat{\gamma})$ , choose  $\hat{\gamma}$  such that  $\hat{\Pi}_{\hat{\gamma}}$  is the largest! That is, select the model with the largest posterior probability.

#### INFERENCE VS PREDICTION

- What if the goal is prediction? Then maybe we should care more about predictive accuracy, rather than selecting specific variables.
- For predictions, we care about the posterior predictive distribution, that is

$$egin{aligned} p(y_{n+1}|Y = (y_1, \dots, y_n)) &= \int_{\Gamma} \int_{\Theta_{\gamma}} p(y_{n+1}|\gamma, heta_{\gamma}) \cdot \pi(\gamma, heta_{\gamma}|Y) \, \mathrm{d} heta_{\gamma} \mathrm{d}\gamma \ &= \int_{\Gamma} \int_{\Theta_{\gamma}} p(y_{n+1}|\gamma, heta_{\gamma}) \cdot \pi( heta_{\gamma}|Y, \gamma) \cdot \Pr[\gamma|Y] \, \mathrm{d} heta_{\gamma} \mathrm{d}\gamma \ &= \sum_{\gamma \in \Gamma} \int_{\Theta_{\gamma}} p(y_{n+1}|\gamma, heta_{\gamma}) \cdot \pi( heta_{\gamma}|Y, \gamma) \cdot \hat{\Pi}_{\gamma} \, \mathrm{d} heta_{\gamma} \ &= \sum_{\gamma \in \Gamma} \hat{\Pi}_{\gamma} \cdot \int_{\Theta_{\gamma}} p(y_{n+1}|\gamma, heta_{\gamma}) \cdot \pi( heta_{\gamma}|Y, \gamma) \, \mathrm{d} heta_{\gamma} \ &= \sum_{\gamma \in \Gamma} \hat{\Pi}_{\gamma} \cdot p(y_{n+1}|Y, \gamma), \end{aligned}$$

which is just averaging out the predictions from each model, over all possible models in  $\Gamma$ , with the posterior probability of each model, and this is known as Bayesian model averaging (BMA).

#### BACK TO BAYESIAN LINEAR REGRESSION

- So what does this mean specifically in the context of linear regression?
- First, recall that for model  $\gamma$ , the posterior probability that the model is the right model is

$$\hat{\Pi}_{\gamma} = rac{\Pi_{\gamma} p_{\gamma}(Y)}{\sum_{\gamma^{\star} \in \Gamma} \Pi_{\gamma^{\star}} p_{\gamma^{\star}}(Y)}.$$

- Practical issues
  - We need to calculate marginal likelihoods for ALL models in  $\Gamma$ .
  - In general for, we cannot calculate the marginal likelihoods unless we have a proper or conjugate priors.
  - For linear regression, that would mean looking to priors like Zellner's g-prior, the horseshoe prior you were introduced to in the lab, and so on.

lacktriangle To explore Bayesian variable selection, rewrite each model  $\gamma \in \Gamma$  as

$$oldsymbol{Y} \sim \mathcal{N}_n(oldsymbol{X}_{\gamma}oldsymbol{eta}_{\gamma}, \sigma^2oldsymbol{I}_{n imes n}).$$

- ullet  $\gamma$  represents the set of predictors we want to throw into our model.
- Using the notation as before, each  $\gamma=(\gamma_0,\gamma_1,\ldots,\gamma_{p-1})\in\{0,1\}^p$ , so that the cardinality of  $\Gamma$  is  $2^p$ , that is, the number of models in  $\Gamma$ .
- That is,
  - ullet  $\gamma_j=1$  means the j'th predictor is included in the model, but  $\gamma_j=0$  means it is not;
  - $lacksquare oldsymbol{X}_{\gamma}$  is the matrix of predictors with  $\gamma_j=1$ ;
  - $oldsymbol{eta}_{\gamma}$  is the corresponding vector of predictors with  $\gamma_{i}=1.$
- Set  $p_{\gamma} = \sum_{j=1}^{p} \gamma_{j}$ , so that  $p_{\gamma}$  is the number of predictors included in model  $\gamma$ , then  $X_{\gamma}$  is  $n \times p_{\gamma}$  and  $\beta_{\gamma}$  is  $p_{\gamma} \times 1$ .

Recall that we can also write each model as

$$Y_i = oldsymbol{eta}_{\gamma}^T oldsymbol{x}_{i\gamma} + \epsilon_i; \quad \epsilon_i \overset{iid}{\sim} \mathcal{N}(0, \sigma^2).$$

- As an example, suppose we had data with 6 potential predictors including the intercept, so that each  $\boldsymbol{x}_i = (1, x_{i1}, x_{i2}, x_{i3}, x_{i4}, x_{i5})$ , and  $\boldsymbol{\beta} = (\beta_0, \beta_1, \beta_2, \beta_3, \beta_4, \beta_5)$ .
- lacksquare Then for model with  $\gamma=(1,1,0,0,0,0)$ ,  $Y_i=oldsymbol{eta}_{\gamma}^Toldsymbol{x}_{i\gamma}+\epsilon_i$

$$\implies Y_i = eta_0 + eta_1 x_{i1} + \epsilon_i; \quad \epsilon_i \stackrel{iid}{\sim} \mathcal{N}(0, \sigma^2),$$

with  $p_{\gamma}=2$ .

lacksquare Whereas for model with  $\gamma=(1,0,0,1,1,0)$ ,  $Y_i=oldsymbol{eta}_{\gamma}^Toldsymbol{x}_{i\gamma}+\epsilon_i$ 

$$\implies Y_i = eta_0 + eta_3 x_{i3} + eta_4 x_{i4} + \epsilon_i; \quad \epsilon_i \overset{iid}{\sim} \mathcal{N}(0, \sigma^2),$$

with  $p_{\gamma}=3$ .

- The outline for variable selection would be as follows:
  - 1. Write down likelihood under model  $\gamma$ . That is,

$$p(oldsymbol{y}|oldsymbol{X},\gamma,oldsymbol{eta}_{\gamma},\sigma^2) \propto (\sigma^2)^{-rac{n}{2}} \exp\left\{-rac{1}{2\sigma^2}(oldsymbol{y}-oldsymbol{X}_{\gamma}oldsymbol{eta}_{\gamma})^T(oldsymbol{y}-oldsymbol{X}_{\gamma}oldsymbol{eta}_{\gamma})
ight\}$$

- 2. Define a prior for  $\gamma$ ,  $\Pi_{\gamma}=\Pr[\gamma]$ . For example, (i) uniform over all  $2^p$  possible models, or even (ii) beta prior (since each  $\gamma_j\in\{0,1\}$ ).
- 3. Put a prior on the parameters in each model. Using the g-prior, we have

$$egin{aligned} \pi(oldsymbol{eta}_{\gamma}|\sigma^2) &= \mathcal{N}_p\left(oldsymbol{eta}_{0\gamma} = oldsymbol{0}, \Sigma_{0\gamma} = g\sigma^2ig[oldsymbol{X}_{\gamma}^Toldsymbol{X}_{\gamma}ig]^{-1}ig) \ \pi(\sigma^2) &= \mathcal{I}\mathcal{G}\left(rac{
u_0}{2}, rac{
u_0\sigma_0^2}{2}
ight) \end{aligned}$$

- With those pieces, the conditional posteriors are straightforward.
- We can then compute marginal posterior probabilities  $\Pr[\gamma|Y]$  for each model and select model with the highest posterior probability.
- We can also compute posterior  $\Pr[\gamma_j = 1|Y]$ , the posterior probability of including the j'the predictor, often called marginal inclusion probability (MIP), allowing for uncertainty in the other predictors.
- Also straightforward to do model averaging once we all have posterior samples.
- The Hoff book works through one example and you can find the Gibbs sampler for doing inference there. I strongly recommend you go through it carefully!
- In this course however, we will focus on using R packages for doing the same.

## WHAT'S NEXT?

MOVE ON TO THE READINGS FOR THE NEXT MODULE!

