
STA 360/602L: MODULE 7.1

THE METROPOLIS ALGORITHM

DR. OLANREWAJU MICHAEL AKANDE

1 / 15

INTRODUCTION

As a refresher, suppose and each . Suppose

we specify a prior on .

Then as usual, we are interested in

As we already know, it is often difficult to compute .

Using the Monte Carlo method or Gibbs sampler, we have seen that we
don't need to know .

As long as we have conjugate and semi-conjugate priors, we can
generate samples directly from .

What happens if we cannot sample directly from ?

y = (y1, … , yn) yi ∼ p(y|θ)

π(θ) θ

π(θ|y) = .
π(θ)p(y, |θ)

p(y)

p(y)

p(y)

π(θ|y)

π(θ|y)

2 / 15

MOTIVATING EXAMPLE

To motivate our discussions on the Metropolis algorithm, let's explore a
simple example.

Suppose we wish to sample from the following density

This is a mixture of two normal densities, one with mode near 0 and the

other with mode near 3.

Note: we will cover finite mixture models properly soon.

Anyway, let's use this density to explore the main ideas behind the
Metropolis sampler.

By the way, as you will see, we don't actually need to know the
normalizing constant for Metropolis sampling but for this example, find it
for practice!

π(θ|y) ∝ exp
− θ2

+ exp
− (θ−3)2

1

2
1

2

1

2

3 / 15

MOTIVATING EXAMPLE

Let's take a look at the (normalized) density:

There are other ways of sampling from this density, but let's focus
specifically on the Metropolis algorithm here.

4 / 15

METROPOLIS ALGORITHM

From a sampling perspective, we need to have a large group of values,
 from whose empirical distribution approximates

.

That means that for any two values and , we want

Basically, we want to make sure that if and are plausible values in
, the ratio of the number of the values equal to them

properly approximates .

How might we construct a group like this?

θ(1), … , θ(S) π(θ|y)

π(θ|y)

a b

÷ = × = ≈
#θ(s) = a

S

#θ(s) = b

S

#θ(s) = a

S

S

#θ(s) = b

#θ(s) = a

#θ(s) = b

π(θ = a|y)

π(θ = b|y)

a b

π(θ|y) θ(1), … , θ(S)

π(θ = a|y)

π(θ = b|y)

5 / 15

METROPOLIS ALGORITHM

Suppose we have a working group at iteration , and need
to add a new value .

Consider a candidate value that is close to (we will get to how to

generate the candidate value in a minute). Should we set or

not?

Well, we should probably compute and see if .

Equivalently, look at .

By the way, notice that

which does not depend on the marginal likelihood we don't know!

θ(1), … , θ(s) s

θ(s+1)

θ⋆ θ(s)

θ(s+1) = θ⋆

π(θ⋆|y) π(θ⋆|y) > π(θ(s)|y)

r =
π(θ⋆|y)

π(θ(s)|y)

r = = ÷

= × = ,

π(θ⋆|y)

π(θ(s)|y)

p(y|θ⋆)π(θ⋆)

p(y)

p(y|θ(s))π(θ(s))

p(y)

p(y|θ⋆)π(θ⋆)

p(y)

p(y)

p(y|θ(s))π(θ(s))

p(y|θ⋆)π(θ⋆)

p(y|θ(s))π(θ(s))

6 / 15

METROPOLIS ALGORITHM

If

Intuition: is already a part of the density we desire and the
density at is even higher than the density at .

Action: set

If ,

Intuition: relative frequency of values on our group

equal to should be . For every , include only a

fraction of an instance of .

Action: set with probability and with
probability .

r > 1

θ(s)

θ⋆ θ(s)

θ(s+1) = θ⋆

r < 1

θ(1), … , θ(s)

θ⋆ ≈ r =
π(θ⋆|y)

π(θ(s)|y)
θ(s)

θ⋆

θ(s+1) = θ⋆ r θ(s+1) = θ(s)

1 − r

7 / 15

METROPOLIS ALGORITHM

This is the basic intuition behind the Metropolis algorithm.

Where should the proposed value come from?

Sample close to the current value using a symmetric proposal
distribution . is actually a "family of proposal distributions",

indexed by the specific value of .

Here, symmetric means that .

The symmetric proposal is usually very simple with density concentrated
near , for example, or .

After obtaining , either add it or add a copy of to our current set of
values, depending on the value of .

θ⋆

θ⋆ θ(s)

g[θ⋆|θ(s)] g

θ(s)

g[θ⋆|θ(s)] = g[θ(s)|θ⋆]

θ(s) N (θ⋆; θ(s), δ2) Unif(θ⋆; θ(s) − δ, θ(s) + δ)

θ⋆ θ(s)

r

8 / 15

METROPOLIS ALGORITHM

The algorithm proceeds as follows:

1. Given , generate a candidate value .

2. Compute the acceptance ratio

3. Set

which can be accomplished by sampling independently

and setting

θ(1), … , θ(s) θ⋆ ∼ g[θ⋆|θ(s)]

r = = .
π(θ⋆|y)

π(θ(s)|y)

p(y|θ⋆)π(θ⋆)

p(y|θ(s))π(θ(s))

θ(s+1) = {
θ⋆ with probability min(r, 1)

θ(s) with probability 1 − min(r, 1)

u ∼ U(0, 1)

θ(s+1) = {
θ⋆ if u < r

θ(s) if otherwise
.

9 / 15

METROPOLIS ALGORITHM

Once we obtain the samples, then we are back to using Monte Carlo
approximations for quantities of interest.

That is, we can again approximate posterior means, quantiles, and other
quantities of interest using the empirical distribution of our sampled
values.

Some notes:

The Metropolis chain ALWAYS moves to the proposed at iteration
 if has higher target density than the current .

Sometimes, it also moves to a value with lower density in
proportion to the density value itself.

This leads to a random, Markov process than naturally explores the
space according to the probability defined by , and hence

generates a sequence that, while dependent, eventually represents
draws from .

θ⋆

s + 1 θ⋆ θ(s)

θ⋆

π(θ|y)

π(θ|y)

10 / 15

METROPOLIS ALGORITHM: CONVERGENCE

We will not cover the convergence theory behind Metropolis chains in
detail, but below are a few notes for those interested:

The Markov process generated under this condition is ergodic and
has a limiting distribution.

Here, think of ergodicity as meaning that the chain can move
anywhere at each step, which is ensured, for example, if

 everywhere!

By construction, it turns out that the Metropolis chains are reversible,
so that convergence to is assured.

Think of reversibility as being equivalent to symmetry of the joint
density of two consecutive and in the stationary process,
which we do have by using a symmetric proposal distribution.

If you want to learn more about convergence of MCMC chains, consider
taking one of the courses on stochastic processes, or Markov chain
theory.

g[θ⋆|θ(s)] > 0

π(θ|y)

θ(s) θ(s+1)

11 / 15

METROPOLIS ALGORITHM: TUNING

Correlation between samples can be adjusted by selecting optimal (i.e.,
spread of the distribution) in the proposal distribution

Decreasing correlation increases the effective sample size, increasing
rate of convergence, and improving the Monte Carlo approximation to
the posterior.

However,

 too small leads to for most proposed values, a high
acceptance rate, but very small moves, leading to highly correlated
chain.

 too large can get "stuck" at the posterior mode(s) because can
get very far away from the mode, leading to a very low acceptance
rate and again high correlation in the Markov chain.

Thus, good to implement several short runs of the algorithm varying
and settle on one that yields acceptance rate in the range of 25-50%.

Burn-in (and thinning) is even more important here!

δ

δ r ≈ 1

δ θ⋆

δ

12 / 15

METROPOLIS IN ACTION

Back to our example with

π(θ|y) ∝ exp
− θ2

+ exp
− (θ−3)2

1

2
1

2

1

2

13 / 15

MOVE TO THE R SCRIPT HERE.

14 / 15

https://sta-360-602l-su20.github.io/Course-Website/slides/Metropolis-I.R

WHAT'S NEXT?

MOVE ON TO THE READINGS FOR THE NEXT MODULE!

15 / 15

