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COUNT DATA

We will use the Metropolis sampler on count data with predictors, so let's
first do some general review.

Suppose you have count data as your response variable.

For example, we may want to explain the number of c-sections carried
out in hospitals using potential predictors such as hospital type, (that is,
private vs public), location, size of the hospital, etc.

The models we have covered so far are not (completely) adequate for
count data with predictors.

Of course there are instances where linear regression, with some
transformations (especially taking logs) on the response variable, might
still work reasonably well for count data.

That's not the focus here, so we won't cover that.
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POISSON REGRESSION

As we have seen so far, a good distribution for modeling count data with
no limit on the total number of counts is the Poisson distribution.

As a reminder, the Poisson pmf is given by

Remember that

When our data fails this assumption, we may have what is known as
over-dispersion and may want to consider the Negative Binomial
distribution instead (actually easy to fit within the Bayesian framework!).

With predictors, index  with , so that each  is a function of .
Therefore, the random component of the glm is

Pr[Y = y|λ] = ;     y = 0, 1, 2, … ;     λ > 0.
λye−λ

y!

E[Y = y] = V[Y = y] = λ.

λ i λi X

p(yi|λi) = Poisson(λi);    i = 1, … , n.
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https://en.wikipedia.org/wiki/Negative_binomial_distribution


POISSON REGRESSION

We must ensure that  at any value of , therefore, we need a link
function that enforces this. A natural choice is

Combining these pieces give us our full mathematical representation for
the Poisson regression.

Clearly,  has a natural interpretation as the "expected count", and

so the 's are multiplicative effects on the expected counts.

For the frequentist version, in R, use the glm command but set the option
family = “poisson”.

λi > 0 X

log (λi) = β0 + β1xi1 + β2xi2 + … + βpxip.

λi

λi = eβ0+β1xi1+β2xi2+…+βpxip

eβj
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ANALYSIS OF HORSESHOE CRABS

We have data from a study of nesting horseshoe crabs (J. Brockmann,
Ethology, 102: 1–21, 1996). The data has been discussed in Agresti
(2002).

Each female horseshoe crab in the study had a male crab attached to
her in her nest.

The study investigated factors that affect whether the female crab had
any other males, called satellites, residing nearby her.

The response outcome for each female crab is her number of satellites.

We have several factors (including the female crab's color, spine
condition, weight, and carapace width) which may influence the
presence/absence of satellite males.

The data is called hcrabs in the R package rsq.
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ANALYSIS OF HORSESHOE CRABS

Let's fit the Poisson regression model to the data. In vector form, we have

where  is the number of satellites for female crab , and  contains the

intercept and female crab 's

color;

spine condition;

weight; and

carapace width.

Suppose we specify a normal prior for , 

.

Can you write down the posterior for ? Can you sample directly from it?

yi ∼ Poisson(λi);    i = 1, … , n;

log[λi] = βT xi

yi i xi

i

β = (β0, β1, β2, … , βp−1)

π(β) = Np(β0, Σ0)

β
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ANALYSIS OF HORSESHOE CRABS

We can use Metropolis to generate samples from the posterior.

First, we need a "symmetric" proposal density ; a

reasonable choice is usually a multivariate normal centered on .

What about the variance of the proposal density? We can use the

variance of the ols estimate, that is, , which we can scale

using , to tune the acceptance ratio.

Here,  is calculated as the sample variance of , for some

small constant , to avoid problems when .

So we have .

Finally, since we do not have any information apriori about , let's set

the prior for it to be .

β⋆ ∼ g[β⋆|β(s)]

β(s)

σ̂2(XT X)−1

δ

σ̂2 log[yi + c]

c yi = 0

g[β⋆|β(s)] = Np (β(s), δσ̂2(XT X)−1)

β

π(β) = Np(β0 = 0, Σ0 = I)
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ANALYSIS OF HORSESHOE CRABS

The Metropolis algorithm for this model is:

1. Given a current , generate a candidate value 

.

2. Compute the acceptance ratio

3. Sample  and set

β(s)

β⋆ ∼ g[β⋆|β(s)] = Np (β(s), δσ̂2(XT X)
−1
)

r = =

= .

π(β⋆|Y )

π(β(s)|Y )

π(β⋆) ⋅ p(Y |β⋆)

π(β(s)) ⋅ p(Y |β(s))

Np(β⋆|β0 = 0, Σ0 = I) ⋅
n

∏
i=1

Poisson(Yi|λi = exp{(β⋆)T
xi})

Np(β(s)|β0 = 0, Σ0 = I) ⋅
n

∏
i=1

Poisson(Yi|λi = exp{(β(s))
T

xi})

u ∼ U(0, 1)

β(s+1) = {
β⋆ if u < r

β(s) if otherwise
.
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MOVE TO THE R SCRIPT HERE.
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https://sta-360-602l-su20.github.io/Course-Website/slides/Horseshoe.R


WHAT'S NEXT?

MOVE ON TO THE READINGS FOR THE NEXT MODULE!
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