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METROPOLIS-HASTINGS ALGORITHM

Gibbs sampling and the Metropolis algorithm are special cases of the
Metropolis-Hastings algorithm.

The Metropolis-Hastings algorithm is more general in that it allows
arbitrary proposal distributions.

These can be symmetric around the current values, full conditionals, or
something else entirely as long as they do not depend on values in our
sequence that are previous to the most current values.

That last point is to ensure the sequence is a Markov chain!

In terms of how this works, the only real change from before is that now,
the acceptance probability should also incorporate the proposal density
when it is not symmetric.
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METROPOLIS-HASTINGS ALGORITHM

Suppose our target distribution is . The algorithm proceeds as

follows:

1. Given a current draw , propose a new value .

2. Compute the acceptance ratio

3. Sample  and set

p0(θ)

θ(s) θ⋆ ∼ gθ[θ⋆|θ(s)]

r = × .
p0(θ⋆)

p0(θ(s))

gθ[θ(s)|θ⋆]

gθ[θ⋆|θ(s)]

u ∼ U(0, 1)

θ(s+1) = {
θ⋆ if u < r

θ(s) if otherwise
.
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METROPOLIS-HASTINGS ALGORITHM

If  corresponds to a posterior distribution  as is often the case

for us, then we have

1. Propose a new value .

2. Compute the acceptance ratio

3. Sample  and set

p0(θ) π(θ|y)

θ⋆ ∼ gθ[θ⋆|θ(s)]

r = ×

= × .

π(θ⋆|y)

π(θ(s)|y)

gθ[θ(s)|θ⋆]

gθ[θ⋆|θ(s)]

p(y|θ⋆)π(θ⋆)

p(y|θ(s))π(θ(s))

gθ[θ(s)|θ⋆]

gθ[θ⋆|θ(s)]

u ∼ U(0, 1)

θ(s+1) = {
θ⋆ if u < r

θ(s) if otherwise
.
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METROPOLIS-HASTINGS ALGORITHM

Suppose our target distribution is , a bivariate distribution for

random variables  and .

For example,  could be the joint posterior distribution for  and 

.

Two options:

Define one joint proposal density  for  and  if

possible; or

Define two proposal densities, one for  and the other for . That is,
 and .

First option follows directly from the main algorithm and often works very
well when possible. Second option needs a little modification.

p0(u, v)

U V

p0(u, v) U

V

gu,v[u⋆, v⋆|u(s), v(s)] U V

U V

gu[u⋆|u(s), v(s)] gv[v⋆|u(s), v(s)]
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METROPOLIS-HASTINGS ALGORITHM

1. Update : first, sample . Then,

Compute the acceptance ratio

Sample . Set  to  if , or set  to 

otherwise.

2. Update : first sample . Then,

Compute the acceptance ratio

Sample . Set  to  if , or set  to 

otherwise.

U u⋆ ∼ gu[u⋆|u(s), v(s)]

r = × .
p0(u⋆, v(s))

p0(u(s), v(s))

gu[u(s)|u⋆, v(s)]

gu[u⋆|u(s), v(s)]

w ∼ U(0, 1) u(s+1) u⋆ w < r u(s+1) u⋆

V v⋆ ∼ gv[v⋆|u(s+1), v(s)]

r = × .
p0(u(s+1), v⋆)

p0(u(s+1), v(s))

gv[v(s)|u(s+1), v⋆]

gv[v⋆|u(s+1), v(s)]

w ∼ U(0, 1) v(s+1) v⋆ w < r v(s+1) v⋆
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METROPOLIS-HASTINGS ALGORITHM

The acceptance ratio looks like what we had before except with an
additional factor.

That factor is the ratio of the probability of generating the current value
from the proposed to the probability of generating the proposed value
from the current (ratio is equal to one for symmetric proposal -- see
homework!).

Also, it is often the case that full conditionals are available for some
parameters but not all.

Very useful trick is to combine Gibbs and Metropolis. See next module.
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WHAT'S NEXT?

MOVE ON TO THE READINGS FOR THE NEXT MODULE!
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