STA 360/602L: MODULE 7.4

METROPOLIS WITHIN GIBBS

DR. OLANREWAJU MICHAEL AKANDE

COMBINING METROPOLIS AND GIBBS

- It is often the case that full conditionals are available for some \blacksquare parameters but not all.
- Very useful trick is to combine Gibbs and Metropolis.
- We will illustrate this by analyzing time series data on global warming.

CARBON DIOXIDE AND TEMPERATURE

- Data are from analysis of ice cores from East Antarctica
- Temperature (recorded in terms of difference from current present temp in degrees C) and CO_2 (measured in ppm by volume) are standardized to have mean 0 and variance $1.$
- 200 values, each roughly 2000 years apart.
- CO_2 values matched with temperature values roughly 1000 years later.

CO2 and temperature follow similar patterns over time.

INFERENCE

- Interest lies in predicting temperature as a function of CO_2 . \blacksquare
- In these data, the error terms are temporally correlated so that a \blacksquare reasonable model for temperature is

$$
\boldsymbol{Y}\sim \mathcal{N}_n(\boldsymbol{X}\boldsymbol{\beta},\Sigma),
$$

where \boldsymbol{X} contains a column for the intercept plus a column for CO_2 , and Σ has a first-order autorearessive structure so that:

$$
\Sigma = \sigma^2 \boldsymbol{C}_{\rho} = \sigma^2 \begin{bmatrix} 1 & \rho & \rho^2 & \cdots & \rho^{n-1} \\ \rho & 1 & \rho & \cdots & \rho^{n-2} \\ \rho^2 & \rho & 1 & \cdots & \rho^{n-3} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ \rho^{n-1} & \rho^{n-2} & \rho^{n-3} & \cdots & 1 \end{bmatrix}
$$

The covariance model assumes constant variance but a decreasing correlation as the time between temperature measures is greater.

- We need to specify prior distributions for $\boldsymbol{\beta}$, σ^2 and ρ .
- \blacksquare If we assume

$$
\pi(\boldsymbol{\beta})=\mathcal{N}_p(\boldsymbol{\mu}_0,\Lambda_0),
$$

then

$$
\pi(\boldsymbol{\beta}|\boldsymbol{y},\boldsymbol{X},\sigma^2,\rho)=\ \mathcal{N}_p(\boldsymbol{\mu}_n,\Lambda_n),
$$

where

$$
\Lambda_n = \left[\Lambda_0^{-1} + \frac{1}{\sigma^2}\boldsymbol X^T \boldsymbol C_\rho^{-1} \boldsymbol X \right]^{-1} \\[1.5ex] \boldsymbol \mu_n = \Lambda_n \left[\Lambda_0^{-1} \boldsymbol \mu_0 + \frac{1}{\sigma^2}\boldsymbol X^T \boldsymbol C_\rho^{-1} \boldsymbol y \right].
$$

 \blacksquare If we assume

$$
\pi(\sigma^2) = \mathcal{IG}\left(\frac{\nu_0}{2}, \frac{\nu_0\sigma_0^2}{2}\right),
$$

then

$$
\pi(\sigma^2|\boldsymbol{y}, \boldsymbol{X}, \boldsymbol{\beta}, \rho) = \mathcal{IG}\left(\frac{\nu_n}{2}, \frac{\nu_n \sigma_n^2}{2}\right),
$$

where

$$
\nu_n=\nu_0+n
$$
\n
$$
\sigma_n^2=\frac{1}{\nu_n}\big[\nu_0\sigma_0^2+\left(\bm{y}-\bm{X}\bm{\beta}\right)^T\bm{C_\rho}^{-1}(\bm{y}-\bm{X}\bm{\beta})\big]=\frac{1}{\nu_n}\big[\nu_0\sigma_0^2+\textrm{SSR}(\bm{\beta},\rho)\big]\,.
$$

Therefore, given ρ , we can use Gibbs sampling to cycle through the full conditionals for β and σ^2 .

- Next, we need a prior for the correlation ρ . There is no semi-conjugate \blacksquare option here.
- Since we expect ρ to be positive, we could use $\pi(\rho) = \mathrm{Unif}(0, 1).$
- Unfortunately, this does not lead to a standard full conditional. \blacksquare
- However, we can use Metropolis-Hastings for the resulting full conditional \blacksquare for $\rho.$ Actually, if we could come up with a symmetric proposal for ρ , we can just use the Metropolis algorithm.
- So, technically, we have a Gibbs sampler since we will cycle through full conditionals. However, the sampling step for ρ will rely on Metropolis.
- **F** Therefore, we have a Metropolis within Gibbs sampler.

- Update for ρ (Metropolis) at iteration $(s + 1)$: \blacksquare
	- 1. Generate a candidate value $\rho^* \sim \mathrm{Unif}(\rho^{(s)} \delta, \rho^{(s)} + \delta).$ If $\rho^* < 0$, reassign as $|\rho^{\star}|.$ If $\rho^{\star} > 1$, reassign as $2 - \rho^{\star}.$

I leave the proof that this "reflecting random walk" is symmetric to you.

2. Compute the acceptance ratio

$$
r=\frac{p(\boldsymbol{y}|\boldsymbol{X},\boldsymbol{\beta}^{(s+1)},\sigma^{2(s+1)},\rho^{\star})\cdot\pi(\rho^{\star})}{p(\boldsymbol{y}|\boldsymbol{X},\boldsymbol{\beta}^{(s+1)},\sigma^{2(s+1)},\rho^{(s)})\cdot\pi(\rho^{(s)})}.
$$

3. Sample $u \sim U(0, 1)$ independently and set

$$
\rho^{(s+1)} = \left\{ \begin{matrix} \rho^\star \quad & \text{if} \quad u < r \\ \rho^{(s)} \quad & \text{if} \quad \text{otherwise} \end{matrix} \right. .
$$

So, for each iteration, we first sample from the full conditionals for $\boldsymbol{\beta}$ and σ^2 , and then use this step to update $\rho.$

MOVE TO THE R SCRIPT [HERE](https://sta-360-602l-su20.github.io/Course-Website/slides/IceCore.R).

WHAT'S NEXT?

MOVE ON TO THE READINGS FOR THE NEXT MODULE!

