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COMBINING METROPOLIS AND GIBBS

It is often the case that full conditionals are available for some
parameters but not all.

Very useful trick is to combine Gibbs and Metropolis.

We will illustrate this by analyzing time series data on global warming.

2 / 11



CARBON DIOXIDE AND TEMPERATURE

Data are from analysis of ice cores from East Antarctica

Temperature (recorded in terms of difference from current present temp
in degrees ) and  (measured in ppm by volume) are standardized
to have mean  and variance .

 values, each roughly  years apart.

 values matched with temperature values roughly  years later.
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DATA

 and temperature follow similar patterns over time.CO2
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INFERENCE

Interest lies in predicting temperature as a function of .

In these data, the error terms are temporally correlated so that a
reasonable model for temperature is

where  contains a column for the intercept plus a column for , and 
 has a first-order autoregressive structure so that:

The covariance model assumes constant variance but a decreasing
correlation as the time between temperature measures is greater.
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POSTERIOR INFERENCE

We need to specify prior distributions for ,  and .

If we assume

then

where

β σ2 ρ

π(β) = Np(μ0, Λ0),

π(β|y, X, σ2, ρ) =  Np(μn, Λn),

Λn = [Λ−1
0 + XT C−1

ρ X]
−1

μn = Λn [Λ−1
0 μ0 + XT C−1

ρ y] .
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POSTERIOR INFERENCE

If we assume

then

where

Therefore, given , we can use Gibbs sampling to cycle through the full

conditionals for  and .

π(σ2) = IG( , ) ,
ν0

2

ν0σ2
0

2

π(σ2|y, X, β, ρ) = IG( , ) ,
νn

2

νnσ2
n

2

νn = ν0 + n

σ2
n = [ν0σ2

0 + (y − Xβ)T C−1
ρ (y − Xβ)] = [ν0σ2

0 + SSR(β, ρ)] .
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POSTERIOR INFERENCE

Next, we need a prior for the correlation . There is no semi-conjugate

option here.

Since we expect  to be positive, we could use .

Unfortunately, this does not lead to a standard full conditional.

However, we can use Metropolis-Hastings for the resulting full conditional
for . Actually, if we could come up with a symmetric proposal for , we

can just use the Metropolis algorithm.

So, technically, we have a Gibbs sampler since we will cycle through full
conditionals. However, the sampling step for  will rely on Metropolis.

Therefore, we have a Metropolis within Gibbs sampler.

ρ

ρ π(ρ) = Unif(0, 1)

ρ ρ

ρ
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POSTERIOR INFERENCE

Update for  (Metropolis) at iteration :

1. Generate a candidate value . If ,

reassign as . If , reassign as .

I leave the proof that this "reflecting random walk" is symmetric to

you.

2. Compute the acceptance ratio

3. Sample  independently and set

So, for each iteration, we first sample from the full conditionals for  and

, and then use this step to update .

ρ (s + 1)

ρ⋆ ∼ Unif(ρ(s) − δ, ρ(s) + δ) ρ⋆ < 0

|ρ⋆| ρ⋆ > 1 2 − ρ⋆

r = .
p(y|X, β(s+1), σ2(s+1), ρ⋆) ⋅ π(ρ⋆)

p(y|X, β(s+1), σ2(s+1), ρ(s)) ⋅ π(ρ(s))

u ∼ U(0, 1)

ρ(s+1) = {
ρ⋆ if u < r

ρ(s) if otherwise
.

β

σ2 ρ

9 / 11



MOVE TO THE R SCRIPT HERE.

10 / 11

https://sta-360-602l-su20.github.io/Course-Website/slides/IceCore.R


WHAT'S NEXT?

MOVE ON TO THE READINGS FOR THE NEXT MODULE!
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