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CONTINUOUS DATA -- UNIVARIATE CASE

Suppose we have univariate continuous data , for , where 

 is an unknown density.

Turns out that we can approximate "almost" any  with a mixture of

normals. Usual choices are

1. Location mixture (multimodal):

2. Scale mixture (unimodal and symmetric about the mean, but fatter
tails than a regular normal distribution):

3. Location-scale mixture (multimodal with potentially fat tails):
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LOCATION MIXTURE EXAMPLE

f(y) = 0.55N (−10, 4) + 0.30N (0, 4) + 0.15N (10, 4)
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SCALE MIXTURE EXAMPLE

f(y) = 0.55N (0, 1) + 0.30N (0, 5) + 0.15N (0, 10)
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LOCATION-SCALE MIXTURE EXAMPLE

f(y) = 0.55N (−10, 1) + 0.30N (0, 5) + 0.15N (10, 10)
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LOCATION MIXTURE OF NORMALS

Consider the location mixture . How can we

do inference?

Right now, we only have three unknowns: , 

, and .

For priors, the most obvious choices are

,

, for each , and

.

However, we do not want to use the likelihood with the sum in the
mixture. We prefer products!

f(y) = ∑K
k=1 λkN (μk, σ2)

λ = (λ1, … , λK)

μ = (μ1, … , μK) σ2

π[λ] = Dirichlet(α1, … , αK)

μk ∼ N (μ0, γ2
0 ) k = 1, … , K

σ2 ∼ IG( , )
ν0

2

ν0σ2
0

2
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DATA AUGMENTATION

This brings us the to concept of data augmentation, which we actually
already used in the mixture of multinomials.

Data augmentation is a commonly-used technique for designing MCMC
samplers using auxiliary/latent/hidden variables. Again, we have
already seen this.

Idea: introduce variable  that depends on the distribution of the
existing variables in such a way that the resulting conditional
distributions, with  included, are easier to sample from and/or result in
better mixing.

's are just latent/hidden variables that are introduced for the purpose
of simplifying/improving the sampler.

Z

Z

Z
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DATA AUGMENTATION

For example, suppose we want to sample from , but  and/or

 are complicated.

Choose  such that , , and  are easy to

sample from. Note that we have .

Alternatively, rewrite the model as  and specify  such that

where the resulting , , and  from the joint 

 are again easy to sample from.

Next, construct a Gibbs sampler to sample all three variables 

from .

Finally, throw away the sampled 's and from what we know about
Gibbs sampling, the samples  are from the desired .

p(x, y) p(x|y)

p(y|x)

p(z|x, y) p(x|y, z) p(y|x, z) p(z|x, y)

p(x, y, z) = p(z|x, y)p(x, y)

p(x, y|z) p(z)

p(x, y) = ∫ p(x, y|z)p(z)dz,

p(x|y, z) p(y|x, z) p(z|x, y)

p(x, y, z)

(X, Y , Z)

p(x, y, z)

Z

(X, Y ) p(x, y)
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LOCATION MIXTURE OF NORMALS

Back to location mixture .

Introduce latent variable .

Then, we have

, and

.

How does that help? Well, the observed data likelihood is now

which is much easier to work with.

f(y) = ∑K
k=1 λkN (μk, σ2)

zi ∈ {1, … , K}

yi|zi ∼ N (μzi
, σ2)

Pr(zi = k) = λk ≡
K

∏
k=1

λ
1[zi=k]
k

p [Y = (y1, … , yn)|Z = (z1, … , zn), λ, μ, σ2] =
n

∏
i=1

p (yi|zi, μzi , σ2)

=
n

∏
i=1

 exp{− (yi − μzi)
2}

1

√2πσ2

1

2σ2
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POSTERIOR INFERENCE

The joint posterior is

π (Z, μ, σ2, λ|Y ) ∝ [
n

∏
i=1

p (yi|zi, μzi , σ2)] ⋅ Pr(Z|μ, σ2, λ) ⋅ π(μ, σ2, λ)

∝ [
n

∏
i=1

p (yi|zi, μzi , σ2)] ⋅ Pr(Z|λ) ⋅ π(λ) ⋅ π(μ) ⋅ π(σ2)

∝ [
n

∏
i=1

 exp{− (yi − μzi)
2}]

      × [
n

∏
i=1

K

∏
k=1

λ
1[zi=k]
k

]

      × [
K

∏
k=1

λαk−1
k

] .

      × [
K

∏
k=1

N (μk; μ0, γ2
0 )]

      × [IG(σ2; , )] .
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FULL CONDITIONALS

For , sample  from a categorical distribution

(multinomial distribution with sample size one) with probabilities

Note that  just means evaluating the density  at

the value .

i = 1, … , n zi ∈ {1, … , K}

Pr[zi = k| …] =

=

= .

Pr[yi, zi = k|μk, σ2, λk]

K

∑
l=1

Pr[yi, zi = l|μl, σ2, λl]

Pr[yi|zi = k, μk, σ2] ⋅ Pr[zi = k|λk]

K

∑
l=1

Pr[yi|zi = l, μl, σ2] ⋅ Pr[zi = l|λl]

λk ⋅ N (yi; μk, σ2)

K

∑
l=1

λl ⋅ N (yi; μl, σ2)

N (yi; μk, σ2) N (μk, σ2)
yi
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FULL CONDITIONALS

Next, sample  from

where , the number of individuals assigned to cluster .

Sample the mean  for each cluster from

Finally, sample  from

λ = (λ1, … , λK)

π[λ| …] ≡ Dirichlet (α1 + n1, … , αK + nK) ,

nk =
n

∑
i=1

1[zi = k] k

μk

π[μk| …] ≡ N (μk,n, γ2
k,n);

γ2
k,n = ;         μk,n = γ2

k,n [ ȳk + μ0] ,
1

+
nk

σ2

1

γ2
0

nk

σ2

1

γ2
0

σ2

π(σ2| …) = IG( , ) .

νn = ν0 + n;        σ2
n = [ν0σ2

0 +
n

∑
i=1

(yi − μzi)
2] .

νn

2

νnσ2
n

2

1

νn
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WHAT'S NEXT?

MOVE ON TO THE READINGS FOR THE NEXT MODULE!
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