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CONTINUOUS DATA — UNIVARIATE CASE

N : iid :
= Suppose we have univariate continuous data y; ~ f, for i,...,n, where
f is an unknown density.

= Turns out that we can approximate "almost" any f with a mixture of
normals. Usual choices are

1. Location mixture (multimodal):
K
Fy) =D AN (uk, 0%)
=l

2. Scale mixture (unimodal and symmetric about the mean, but fatter
tails than a regular normal distribution):

K
fw) = AN (m,0})
k=1
3. Location-scale mixture (multimodal with potentially fat tails):

K
f) =Y NN (ur, 07)
k
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LOCATION MIXTURE EXAMPLE

f(y) = 0.55N (—10,4) + 0.30A (0,4) + 0.15\ (10, 4)
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SCALE MIXTURE EXAMPLE

f(y) = 0.55\ (0,1) + 0.30N (0, 5) + 0.15A (0, 10)
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LOCATION-SCALE MIXTURE EXAMPLE

f(y) = 0.55N (—10,1) 4+ 0.30N (0,5) + 0.15A/ (10, 10)
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LOCATION MIXTURE OF NORMALS

STA 360/602L

Consider the location mixture f(y) = Zi{:l AN (pr, 02). How can we
do inference?

Right now, we only have three unknowns: A = (A,..., Ag),
p=(ui,...,ug), and o2,

For priors, the most obvious choices are
= 7w|A] = Dirichlet(ay,...,ax),

= pp ~ N(po,7;), foreachk=1,..., K, and

2
o g(2, 5 )

However, we do not want to use the likelihood with the sum in the
mixture. We prefer products!
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DATA AUGMENTATION

= This brings us the to concept of data augmentation, which we actually
already used in the mixture of multinomials.

= Data augmentation is a commonly-used technique for designing MCMC
samplers using auxiliary/latent/hidden variables. Again, we have
already seen this.

» Idea: introduce variable Z that depends on the distribution of the
existing variables in such a way that the resulting conditional
distributions, with Z included, are easier to sample from and/or result in
better mixing.

» Z's are just latent/hidden variables that are introduced for the purpose
of simplifying/improving the sampler.
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DATA AUGMENTATION

= For example, suppose we want to sample from p(z,y), but p(z|y) and/or
p(y|x) are complicated.

= Choose p(z|z,y) such that p(z|y, 2), p(y|z, ), and p(z|z,y) are easy to
sample from. Note that we have p(z,y, 2) = p(z|z, y)p(z, y).

= Alternatively, rewrite the model as p(z, y|z) and specify p(2) such that

Pz, y) = / p(z, yl2)p(2)dz,

where the resulting p(z|y, 2), p(y|z, z), and p(z|z,y) from the joint
p(z,y, z) are again easy to sample from.

= Next, construct a Gibbs sampler to sample all three variables (X, Y, Z)
from p(z, y, 2).

= Finally, throw away the sampled Z's and from what we know about
Gibbs sampling, the samples (X,Y) are from the desired p(z,y).
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LOCATION MIXTURE OF NORMALS

Back to location mixture f(y) = Zle AN (g, 02).

Introduce latent variable z; € {1,..., K}.

Then, we have

" Y|z NN(uzi,a2), and

K
u PI'(ZZ' = k) = )‘k: = H )\llc[ZZ:k]
k=1

How does that help? Well, the observed data likelihood is now

p [Y - (yla 2 e ayn)‘Z - (Zla 2 ¢ 'azn)7>‘7 K, 02] — Hp (yi|zi7,u'zi)0-2)

which is much easier to work with.
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POSTERIOR INFERENCE

= The joint posterior is

7 (Z, 0%, A)Y) o ||| p (vil2i, p, o)

=

s
Il
P

) PI‘(Zl[J,, 0'2, A) ’ 77(”" 02v A)

Pr(Z|A) - 7(A) - n(p) - n(0?)

- -
X Hp(yi|zi7/*l’zno-2)

< | LIV (ks 0, 75)
=i

g7 g

STA 360/602L

|

9 -Ig (0-2. 1y VOO’g)] .

10/ 13



FULL CONDITIONALS

» Fori=1,...,n, sample z; € {1,..., K} from a categorical distribution
(multinomial distribution with sample size one) with probabilities

Pr[yia Rj = k‘,u’ka 027 )‘k]

Pr[zi=k|...] = -
Z Pr[yi7 Z; = l|:u’l7 0-27 >\l]
=1

Prly;|z; = k, pr, 02] - Prlz; = k|A]

K
> Prly;|z; =1, w, 02] - Prlz; = [|A]
=1

Ak - N (35 ey 02)

K
2 e N (gis iy o)
= Note that N (y;; pk, 0%) just means evaluating the density N (ui, o2) at

the value ;.
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FULL CONDITIONALS

= Next, sample A = (Aq,..., \g) from

w[A|...] = Dirichlet (a; + nq,...,ax +ng),

where n;, = Y 1[z; = k], the number of individuals assigned to cluster k.
i=1

= Sample the mean py for each cluster from

Tl -] = N (Brn, Vi n)s
1 ng 1
_ : 2 —
7;3,,1 = e 10 Pk = Vi, [;yk + ¥M0] ;
21T ’
o '70

= Finally, sample o2 from
2
(o’l..) =76 (2, ).

9 1
VUp = Vg + 1N O = —
Vn

n
ot 30— w] .
=1
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WHAT'S NEXT®

MOVE ON TO THE READINGS FOR THE NEXT MODULE!

13 /13



