STA 360/602L: Module 8.5

FINITE MIXTURE MODELS: MULTIVARIATE CATEGORICAL DATA

Dr. Olanrewaju Michael Akande

CATEGORICAL DATA: BIVARIATE CASE

- lacksquare Suppose we have data (y_{i1},y_{i2}) , for $i=1,\ldots,n$, where
 - $y_{i1} \in \{1,\ldots,D_1\}$
 - $y_{i2} \in \{1, \ldots, D_2\}.$
- lacktriangle This is just a two-way contingency table, so that we are interested in estimating the probabilities $\Pr(y_{i1}=d_1,y_{i2}=d_2)= heta_{d_1d_2}.$
- lacktriangle Write $m{ heta}=\{ heta_{d_1d_2}\}$, which is a $D_1 imes D_2$ matrix of all the probabilities.

CATEGORICAL DATA: BIVARIATE CASE

■ The likelihood is therefore

$$egin{align} p[Y|m{ heta}] &= \prod_{i=1}^n \prod_{d_2=1}^{D_2} \prod_{d_1=1}^{D_1} heta_{d_1d_2}^{1[y_{i_1}=d_1,y_{i_2}=d_2]} \ &= \prod_{d_2=1}^{D_2} \prod_{d_1=1}^{D_1} heta_{d_1d_2}^{\sum_{i=1}^n 1[y_{i_1}=d_1,y_{i_2}=d_2]} \ &= \prod_{d_2=1}^{D_2} \prod_{d_1=1}^{D_1} heta_{d_1d_2}^{n_{d_1d_2}} \end{aligned}$$

where $n_{d_1d_2}=\sum\limits_{i=1}^n 1[y_{i1}=d_1,y_{i2}=d_2]$ is just the number of observations in cell (d_1,d_2) of the contingency table.

- How can we do Bayesian inference?
- Several options! Most common are:
- Option 1: Follow the univariate approach.
 - Rewrite the bivariate data as univariate data, that is, $y_i \in \{1, \dots, D_1D_2\}.$
 - $lacksquare \operatorname{Write} \Pr(y_i = d) =
 u_d ext{ for each } d = 1, \dots, D_1 D_2.$
 - ullet Specify Dirichlet prior as $oldsymbol{
 u}=(
 u_1,\dots,
 u_{D_1D_2})\sim \mathrm{Dirichlet}(lpha_1,\dots,lpha_{D_1D_2}).$
 - Then, posterior is also Dirichlet with parameters updated with the number in each cell of the contingency table.

- Option 2: Assume independence, then follow the univariate approach.
 - ullet Write $\Pr(y_{i1}=d_1,y_{i2}=d_2)=\Pr(y_{i1}=d_1)\Pr(y_{i2}=d_2)$, so that $heta_{d_1d_2}=\lambda_{d_1}\psi_{d_2}.$
 - ullet Specify independent Dirichlet priors on $oldsymbol{\lambda}=(\lambda_1,\ldots,\lambda_{D_1})$ and $oldsymbol{\psi}=(\psi_1,\ldots,\psi_{D_2}).$
 - That is,
 - lacksquare $oldsymbol{\lambda} \sim \operatorname{Dirichlet}(a_1,\ldots,a_{D_1})$
 - ullet $oldsymbol{\psi} \sim \mathrm{Dirichlet}(b_1,\ldots,b_{D_2}).$
 - This reduces the number of parameters from D_1D_2-1 to D_1+D_2-2 .

Option 3: Log-linear model

$$lackbox{lackbox{$ackbox{$lackbox{$$$

Specify priors (perhaps normal) on the parameters.

- Option 4: Latent structure model
 - Assume conditional independence given a latent variable;
 - That is, write

$$egin{aligned} heta_{d_1d_2} &= \Pr(y_{i1} = d_1, y_{i2} = d_2) \ &= \sum_{k=1}^K \Pr(y_{i1} = d_1, y_{i2} = d_2 | z_i = k) \cdot \Pr(z_i = k) \ &= \sum_{k=1}^K \Pr(y_{i1} = d_2 | z_i = k) \cdot \Pr(y_{i2} = d_2 | z_i = k) \cdot \Pr(z_i = k) \ &= \sum_{k=1}^K \lambda_{k,d_1} \psi_{k,d_2} \cdot \omega_k. \end{aligned}$$

This is once again, a finite mixture of multinomial distributions.

CATEGORICAL DATA: EXTENSIONS

- For categorical data with more than two categorical variables, it is relatively easy to extend the framework for latent structure models.
- Clearly, there will be many more parameters (vectors and matrices) to keep track of, depending on the number of clusters and number of variables!
- If interested, read up on finite mixture of products of multinomials.
- Can also go full Bayesian nonparametrics with a Dirichlet process mixture of products of multinomials.
- Happy to provide resources for those interested!

WHAT'S NEXT?

MOVE ON TO THE READINGS FOR THE NEXT MODULE!

